

Summary of WERF Methane and Biogas-CHP-Related Research

WERF

Methane Expo 2013

John Willis, Brown and Caldwell

Lauren Fillmore, Water Environment Research Foundation

March 14, 2013

YSERDA • Brown and Caldwell • Black & Veatch • Hemenway Inc. • NEBRA

Today's Presentation

- Barriers to Biogas Use
- Barriers to Biogas Use Economics
- LCAMER
- Fugitive Methane Research:
 - Flare Emissions Estimator
 - Collection Systems
 - Lagoons and Ponds

Barriers to Biogas Use

Project Overview

PHASE I Establish Framework

- Conduct Kickoff Mtg. to Align Goals and Objectives
- Collect and mine relevant project experience
- Develop online survey content and define output requirements

PHASE II Develop and Launch Survey

- Develop
 electronic survey
- Roll-out to utilities
- Analyze survey results

PHASE III Conduct Focus Group Meetings

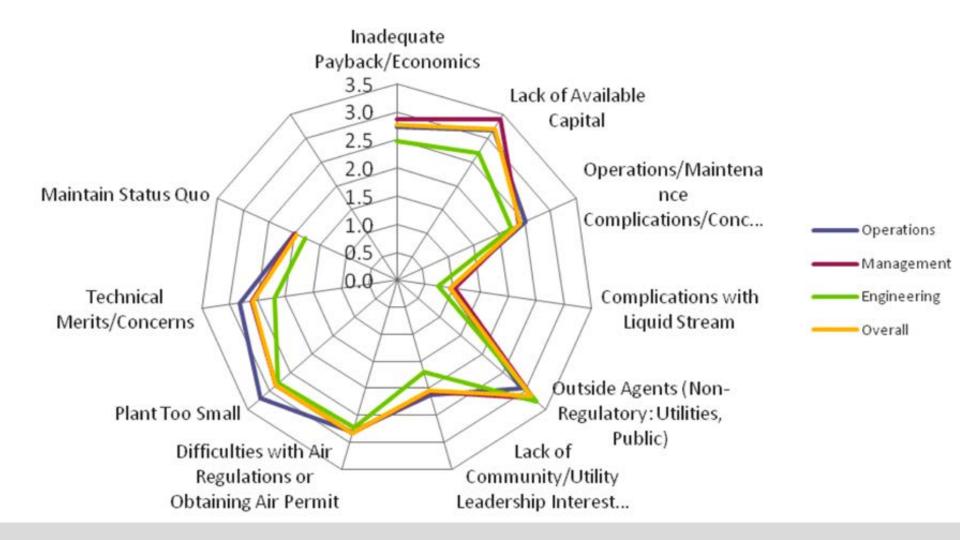
-

- Conduct meetings (over course of project)
- WEF Nutrient Mgmt. (Jan. 9, 2011, Miami)
- NYWEA 2011 (Feb. 9, 2011 New York)
- WEF R&B 2011 (May 25, 2011 Sacramento)
- WEF Water & Energy 2011 (Aug. 3, 2011 Chicago)

PHASE IV Analyze Results/Summarize

- Analyze barriers
- Identify strategy recommendations to overcome barriers
- Summarize Draft and Final Reports including Utility Profiles

Final Report is Available from WERF


- Executive summary
- Introduction
- Biogas uses for renewable energy
- Online survey overview, results & interpretation
- Focus group summaries
- Small plant barrier mitigation
- Non-utility perspectives on barriers
- Conclusions and recommended next steps
- Plus: case studies, focus group minutes

Report is available at: http://www.werf.org/a/ka/Search/ResearchProfile.aspx?ReportId=OWSO11C10

Survey Data – Example of Data Presentation

All


Conclusions

- The most significant barriers to biogas use are economic:
 - higher priority demands on limited capital resources
 - perceptions that economics do not justify investments
- Outside agents like power utilities can be barriers
- Air permitting can be a significant barrier in specific geographies/permitting situations
- Public agencies' decision-making practices often hinder biogas use

Water Environment Research Foundation Collaboration. Innovation. Results.

Barriers to Biogas Use Economics

Simple Payback is used Too Often, but has Significant Shortcomings

- <u>Does not</u> consider time-value of money
- <u>Does not</u> consider impact on cash flow
- Criterion: Allows a sliding scale for determination of suitability

Creating a Better Business Case Through Holistic Benefit and Cost Analysis

One of the biggest burdles will the face when initiating a combined heat and sower (CHP) project is the ability to communicate the cash and benefits of CHP to deals on makers and the public. This is often due to the failure to be eccomic nethods that appropriately calculate the financial outlage and long-term benefits. Without this support, dealiant can be based on arbitrary factory, rather than estimating the simple question is that a good long-term investman?

Better metrics can help utilities get a more accurate picture of a project's adual costs and benefits, and utilimately make more informed decisions about moving a project forward.

Other Options Provide more Comprehensive and Definitive Treatment

- Net present value (NPV)
- Benefit cost ratio (BCR)
- Internal rate of return (IRR)
- Equivalent uniform annual net value (EUAV)
- These Options:
 - Do consider time-value of money
 - Do consider impact on cash flow

Case Study in Factsheet shows Juxtaposition:

	Table 1. Financial Results for Alternative Metrics						
	ltem	Alternative 1 – Constant	Alternative 2 – Escalated				
	Capital Cost Annual Operating Savings	\$4,200,000 \$334,257	\$4,200,000 \$367,264				
	Payback Period	12.6 years	11.4 years				
???/???	Project Action	Dependent on utility's requirements for payback period, this value can result in the project being rejected	Dependent on utility's requirements for payback period, this value can result in the project being rejected				
	Present Value of Savings (or Benefits) Present Value of Costs	\$9,681,618 \$9,299,692	\$9,929,725 \$9,162,267				
GO/GO	Net Present Value	\$381,925	\$767,457				
GU/GU	Project Action	NPV > 0, so consider accepting CHP project	NPV > 0, so consider accepting CHP project				
	BCR	1.041	1.084				
GO/GO	Project Action	BCR \geq 1, so consider accepting CHP project	BCR \geq 1, so consider accepting CHP project				
	Discount Rate, i	3.5%	3.5%				
colco	IRR	4.5%	5.5%				
GO/GO	Project Action	IRR > i, so consider accepting CHP project	IRR > i, so consider accepting CHP project				
	EUAB	\$681,209	\$698,666				
	EUAC	\$654,336	\$644,667				
GO/GO	NUV	\$26,873	\$53,999				
	Project Action	NUV > 0, so consider accepting CHP project	NUV \geq 0, so consider accepting CHP project				

Water Environment Research Foundation Collaboration. Innovation. Results.

LCAMER

(Slides Courtesy of Hugh Monteith, Hydromantis)

What Digestion/CHP System is Right for Me?

Electricity Cost?

Plant size?

Methane Content?

Biogas Production?

Biogas Pretreatment?

Emission Regulations?

Natural Gas Cost?

Borrowing cost?

GHG Credits?

Sell electricity or use onsite?

Government Assistance?

LCAMER was developed to:

- Create a tool for comparing the benefits and costs of digester energy recovery over the lifetime of a WWTP
- Predict the most economically viable solids treatment and energy recovery alternatives for given data sets

LCAMER Worksheets:

- 5 worksheets non-modifiable by users
 - Info to users
 - Energy Recovery System (ERS) emission factors
 - Default temperatures for States/Provinces
 - hydrolysis constants for VSR in digesters
 - replacement costs for ERS
- 3 worksheets user-accessible
 - Basic conversion factors
 - Technical inputs and models
 - Economic inputs and models

Validation of LCAMER

- Focus was on demonstrating the applicability, effectiveness, and areas of improvement for LCAMER
- Process variables and financial cost factors were adjusted to meet actual conditions at the 2 sites, resulting in successful implementation of LCAMER
 - Reinforced choice of ICE for CHP at Gwinnett County (GA)
 - Provided basis for choice of ICE at Pinellas County (FL)

Examples of LCAMER Uses:

- Compare economics for
 - Different energy recovery processes
 - Convert from mesophilic to thermophilic operation (same energy recovery system)
 - Use of advanced sludge treatment to enhance volatile solids reduction for increased gas production
 - Imported digester feedstocks
 - Evaluation of peak load shifting

Water Environment Research Foundation Collaboration. Innovation. Results.

Fugitive Methane Research: Flare Emissions Estimator

WERF Flare Efficiency Calculator

- Model developed by University of Alberta from data collected during Flare Research Project
- Developed for digester gas and landfill gas

Flare Research Project

Main

Flaring Facts

Flare Performance

Facilities

Current Activities

Results

Publications

Personnel

Funding Partners

Related Links

University of Alberta

Department of Mechanical Engineering Combustion and Environment Group

Model Inputs Include:

- Dry Gas CH₄, CO₂, and O₂ Fractions
- Temperature of Gas
- Relative Humidity of Gas
- Gas Flowrate and Nozzle Diameter calculate Flare Jet Speed
- Wind Speed

Output is Flare Efficiency

How Efficient are Conventional Flares?

- USEPA assumes 99% efficiency
- Model predicts 94.3%for

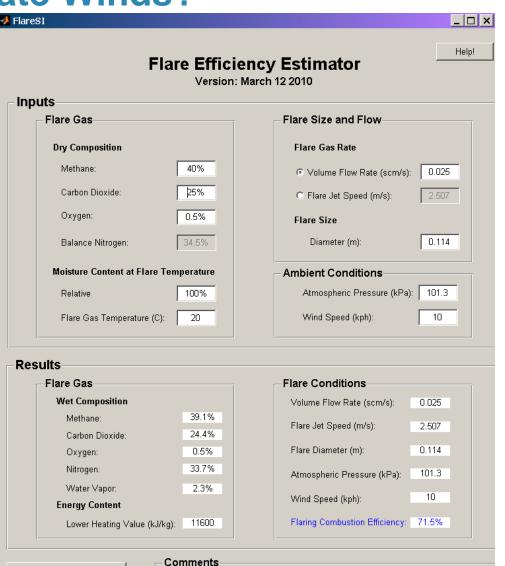
Flar		ncy Estimator arch 12 2010	<u> </u>
uts			
Flare Gas		Flare Size and Flow	
Dry Composition		Flare Gas Rate	
Methane:	65%	O Volume Flow Rate (scm/s):	0.025
Carbon Dioxide:	34%	◯ Flare Jet Speed (m/s):	2.644
Oxygen:	0.5%	Flare Size	
Balance Nitrogen:	0.5%	Diameter (m):	0.114
Moisture Content at Flare Tem	perature	Ambient Conditions	
Relative	100%	Atmospheric Pressure (kPa):	101.3
Flare Gas Temperature (C):	30	Wind Speed (kph):	10
ults			
Flare Gas		Flare Conditions	
Wet Composition		Volume Flow Rate (scm/s):	0.025
Methane:	62.3%	Flare Jet Speed (m/s):	2.644
Carbon Dioxide: Oxygen:	32.6% 0.5%	Flare Diameter (m):	0.114
Nitrogen:	0.5%	Atmospheric Pressure (kPa):	101.3
Water Vapor:	4.2%	Almospheric Pressure (kPa).	
Energy Content		Wind Speed (kph):	10
Lower Heating Value (kJ/kg):	19697	Flaring Combustion Efficiency:	94.3%
Energy Content			10 94.3%

Change to Standard Units

High confidence solution - all parameters in normal ranges.

Thermophilic and Windy?

- USEPA assumes 99% efficiency
- Model predicts 87.5%for thermophilic biogas with 20mph winds


		ncy Estimator
ts Flare Gas		─ Flare Size and Flow
Dry Composition		Flare Gas Rate
Methane:	65%	⊙ Volume Flow Rate (scm/s): 0.03
Carbon Dioxide:	34%	C Flare Jet Speed (m/s): 3.69
Oxygen:	0.5%	Flare Size
Balance Nitrogen:	0.5%	Diameter (m): 0.114
Moisture Content at Flare Temperature		Ambient Conditions
Relative	100%	Atmospheric Pressure (kPa): 101.3
Flare Gas Temperature (C):	50	Wind Speed (kph): 20
llts		
Flare Gas		Flare Conditions
Wet Composition		Volume Flow Rate (scm/s): 0.03
Methane:	57.1%	Flare Jet Speed (m/s): 3.69
Carbon Dioxide:	29.9%	Flare Diameter (m): 0.114
Oxygen:	0.4%	
Nitrogen: Water Vapor:	12.2%	Atmospheric Pressure (kPa): 101.3
vvater vapor: Energy Content	12.270	Wind Speed (kph): 20
Lower Heating Value (kJ/kg)	18500	Flaring Combustion Efficiency: 87.5%

Comments

High confidence solution - all parameters in normal ranges.

Landfill Gas and Moderate Winds?

- USEPA assumes 99% efficiency
- Model predicts 71.5% for landfill gas with 10mph winds

High confidence solution - all parameters in normal ranges.

How Significant is the Difference?

- WWTP in Georgia treating 34 mgd:
 - EPA at 99% assumed efficiency = 116 MT CO₂e/year
 - Flare tool estimated efficiency of 94.5% = 638 MT CO₂e/year
- WWTP in Tennessee treating 80 mgd:
 - EPA at 99% assumed efficiency = 205 MTCO₂e/year
 - Flare tool estimated efficiency of 96.6% = 693 MT CO₂e/year

Flare Emissions Estimator is Housed at NYSERDA.NY.gov

- Energy Efficiency and Renewable Program
- Commercial and Industrial
- Municipal Water and Wastewater
- Final Reports
- Barriers to Biogas
 - Flare Calculator

New York 🧾 State		i≘ State	Agencies		# Sea
Energy. Innovation	Francis J. Murra		mo, Governor ERDA President and	CEO	
Energy Efficiency and Renewable Programs		y Educatio prce Develo		Energy and the Environment	Energy D and
Home About Events	Funding Opportunities Public	ations	Contractors	All Programs	Contacts Nev
Agriculture	Final Reports for Wate	er and	Wastewa	ater	Announcement
Municipal Water & Waste Water	K-12 Schools Technology Development Demonstration				
Facilities	Projects				01/10/2013 - NYSI \$650,000 to Primet P
Funding and Technical Assistance Programs					Materials of Ithaca to on Energy-Efficient B
Tools and Materials	Report Title	Report	Ownor	City	Process
Presentations and Events		Number	Owner	City	01/02/2012 00/0
Infrastructure Alliance Sustainability	Proof-of-Concept for Co-Digestion of Food Waste, Fats, Oil and Grease, and Wastewater Sludge Cake to Create	12-22			01/03/2013 - NYS \$765,000 to Regener Pharmaceuticals in W
Frequently Asked Questions	Renewable Energy [PDF 2.7MB]				Energy Efficiency Im
Final Reports for Water and Wastewater Technology Development Demonstration	Assessment of Biochemical Process Controls for Reduction of Hydrogen Sulfide Concentrations in Biogas from Farm Digesters [PDF]	12-20		-	01/03/2013 - NYSI New Proof-of-Concep
Projects	The UV Validation and Reserch Center of New York [PDF]	12-13			Columbia University, High Tech Rochester
Colleges and Universities	Barriers to Biogas Use for Renewable Energy [PDF]				Clean-Energy Busine
Data Center Incentives					12/28/2012 - Gov
Manufacturer Incentives	Fact Sheet: Reframing the Economics of Combined				Launches "BUILD SM Initiative With Execut
Small Business and Not-for- Profits	Heat and Power Projects [PDF]				
Commercial Real Estate (CRE)	Biogas System Flare				Funding Opport
Healthcare	Calculator: Calculates Flare Efficiency and				Assisted Home Perfo
Commercial Kitchens	Emissions [ZIP 151MB]				with ENERGY STAR
State Facilities and Vehicles	 Download all four files to the 				PON 2149 - Solar Th Program
National Fuel's Incentive Program	same directory. 2. Run the Matlab				PON 1746 - FlexTech
	"installer" (this takes a while)				PON 2293 - Green Jo York Small Business

Water Environment Research Foundation Collaboration. Innovation. Results.

Fugitive Methane Research: Collection Systems

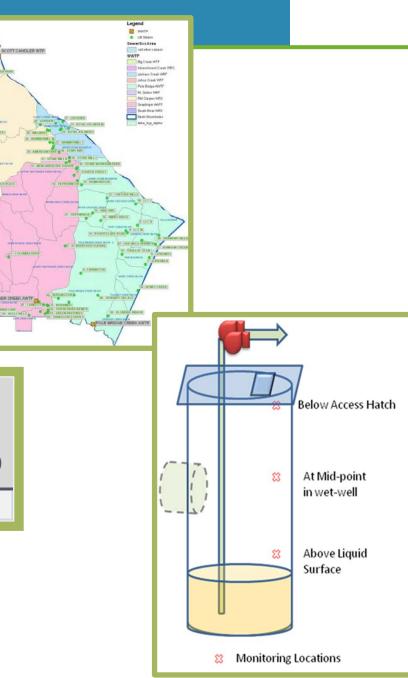
WERF Collection-System Methane is Centered in Two, Sequential Projects

• Results of First Project are published in

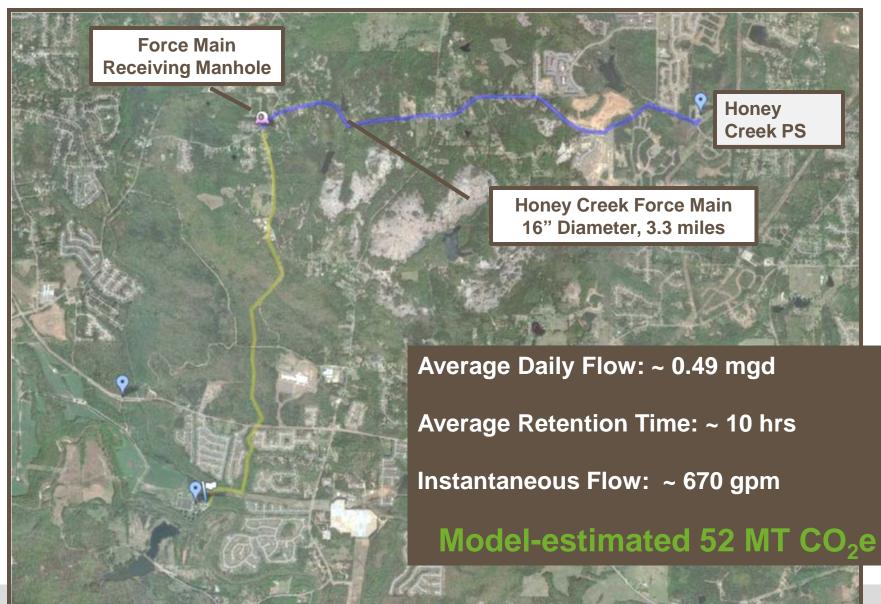
Global Water Research Coalition

N₂O and CH₄ Emission from Wastewater Collection and Treatment Systems

State of the Science Report


Global Water Research Coalition www.globalwaterresearchcoalition.net

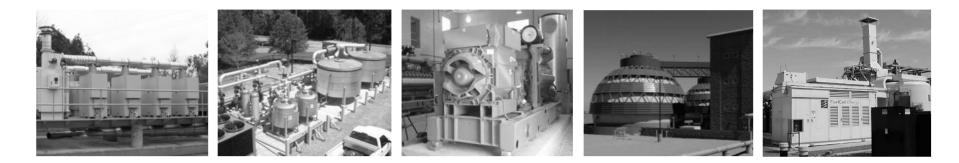
DeKalb County (GA) was First Project Site


- Serves over 600,000
- 64 sanitary sewage lift stations

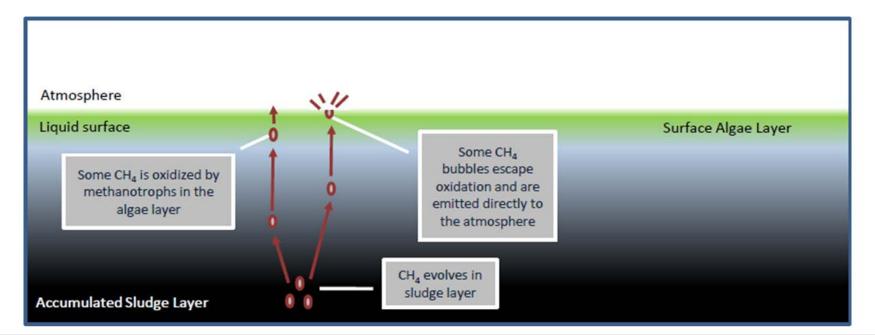
	Summer CH ₄ (Ib/half yr)	Winter CH ₄ (Ib/half yr)	Annual CH ₄ (Ib/yr)	Annual CO ₂ e (Ib/yr)	Annual CO ₂ e (MT/yr)
Totals:	75,110	23,371	98,481	2,068,107	940

 Found to have 940 MT CO₂e/yr of CH₄

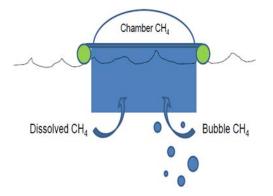
Honey Creek PS and FM

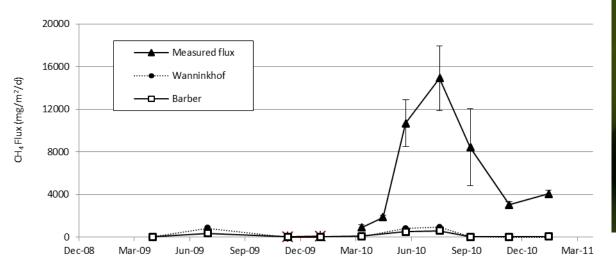

New Project (CAPS) will Model DCWater's Collection-System-wide CH₄ Emissions

- Calibration of
 - Potomac Interceptor
 - Potomac Forcemain
- Estimation of system-wide emissions
- Parallel H2S investigation
- Calibration/testing of mitigation chemicals


Water Environment Research Foundation Collaboration. Innovation. Results.


Fugitive Methane Research: Lagoons and Ponds


Explored Methane Evolution, Processing and Emissions from Low-Energy Treatment Processes


- Teamed with Ames (NASA)
- Tested Photosynthetic Oxidation Ponds and Facultative Sludge Lagoons (fed from digesters)


Results to be Published in next 6 months

Summary

Summary

- WERF has been doing quite a bit of wastewater treatment research on:
 - How to Enhance Energy Production from Wastewater Treatment
 - Determination of Greenhouse Gas Emissions
- Log-on to <u>www.WERF.org</u> and become a subscriber

John Willis, P.E., BCEE Brown and Caldwell Jwillis@BrwnCald.com (770) 361-6431

