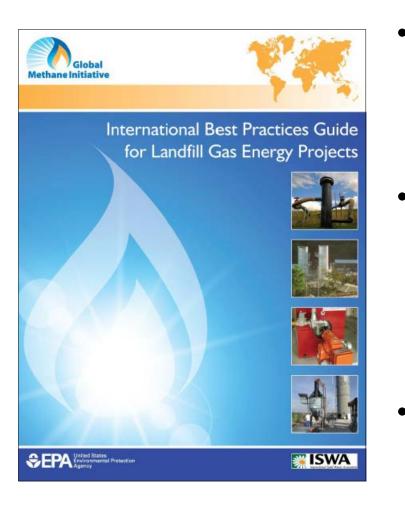
Best Practices to Select Internal Combustion Engines and Maximize the Success of Methane to Electricity Projects

Mauricio Lopez Electric Power Gas Division Caterpillar, Inc.


Methane Expo 2013 Vancouver, Canada

- This presentation is an add-on companion to GMI's Best Practices.
- Provides four additional practices for better
 decisions in methane to electricity projects.
- Applies to all segments (Ag, Waste Water, etc.)

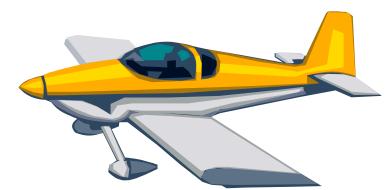
Agenda

- 1. Engine Technology
- 2. Gas Contamination
- 3. Engine Installation
- 4. Engine Maintenance & Operations (M&O) Costs.

Engine Technology High Efficiency v. High Robustness

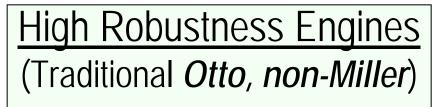
Internal Combustion Engine

- Invented by N. Otto, 1876
 Traditional four-stroke cycle
- Improved by R. Miller, 1957
 - Changes valve timing, fuel mixture 'supercharged'
 - Manages higher pressure inside the cylinders
 - Inherently more efficient
 - Requires closer control of air inlet temperature, fuel contamination, tolerances.



Which Technical Design Is Better?

It depends



Page 6

Engine Design Trade-Off

- Accept higher siloxane and H2S contamination
- Efficiency below 40%
- Dirty gas forces more oil changes, higher M&O cost
- Excellent for: 'dirty' gas, worst-case ambient swings & quicker load response

High Efficiency Engines (*Miller* Cycle)

CAPEX OPEX

- Usually require costly siloxane & H2S removal
- Efficiency above 40%
- Lower M&O costs due to cleaner gas
- Excellent for: 'clean' gas, controlled environments, average load demands

Engine Technology Best Practice

- Run two separate economic evaluations of your methane to electricity project:
 - Scenario A: high efficiency engine (Miller)
 - Scenario B: high robustness engine (non-Miller)
- Include in your evaluation:
 - CAPEX: cost of siloxane and H2S removal equipment required by high efficiency engine
 - OPEX: additional M&O for siloxane/H2S removal units
 - Risk Factors: if cleaning equipment fails or underperform, high efficiency engine will be quickly damaged

2. Gas Contamination

Removing Siloxanes and H2S

Why Siloxane and H2S?

- Siloxanes
 - Present in cosmetics, shampoo, detergents
 - Transform during combustion to SiO2. Sand in the engine!
- H2S (Hydrogen Sulphide)
 - Combusts to SO2 and H2O.
 Further transform to sulphurous/sulphuric acid.
 - Corrosion

Fuel Specification Guidelines

- All Manufacturers have guidelines for maximum fuel contamination. Warranty depends on compliance.
- Miller engine users strongly advised to stay within the limits of the 'clean biogas' definition

Sample Recommenda	tion for Optimal	Engine Application	*Based on 500 Btu/scf Fuel

	Non-Mille	er Engine	Miller Engine			
Fuel Contaminant	µg/Btu of Fuel	Approx. PPM*	µg/Btu of Fuel	Approx. PPM*		
Halides (as Cl)	20	230	0.55	7		
Sulfur (as H ₂ S)	60	730	12.2	155		
Siloxanes (as Si)	0.6	9.0	0.11	1.6		
Ammonia	2.96	72	0.17	4		

Page 11

Economics of Siloxane Removal

- Recent 12MW LFGE project (6 engines)
 - Siloxane removal unit added 25% extra cost
- Recent 1-2MW quotes
 - 50-100% added cost.
- 1 MW and below
 - Siloxane removal costs as much as the engine!
- Cost becomes manageable if project is very large

3. Engine Installation Options

Building v. Container

Container

Engine Installation Trade-Off

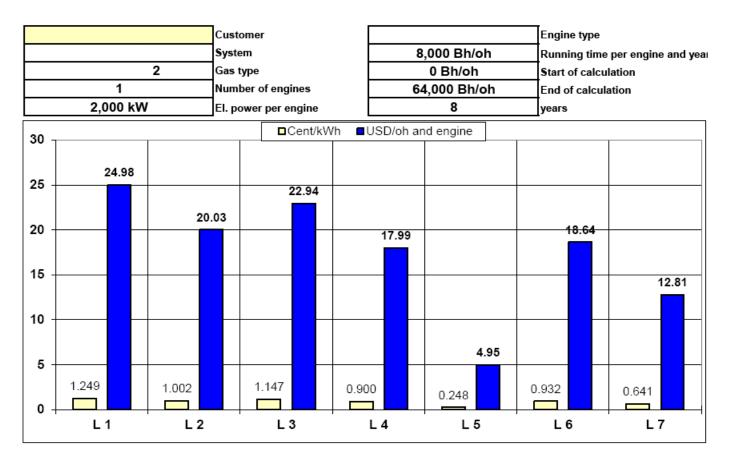
Building Installation

- Ample space for service personnel, cranes for safe lifting of heavy parts, controls & storage rooms
- Economies of scale for multi-engine buildings
- Easier to manage dust contamination and air inlet temperatures

Container Installation

- Restricted access and work space, more time & money on service steps
- Fast deployment, easier to quickly add or remove units
- Easier to obtain bank loans
- High reliability: complex systems integrated by engine manufacturer

4. Better Estimation of M&O Costs


Estimating Maintenance & Operation Costs

- Most financial evaluation tools use just one number for the M&O cost of a generator set
- Comparison of costs may not be appropriate without knowing the different elements that went into the M&O number
- Potential customers need to request separate estimates for different combinations of service
 - Window of time used for calculations is critical
 - Gas type used for calculations also critical

Cost per kWh, Cost per Running Hour

• L1-L7 are lists of different service alternatives

Need to Break Down O&M Elements

Service list	(L1 - L7)	L1	L 2	L 3	L4	L 5	L6	L7
Engine	4 x E10	X	X	X	X		X	X
	16 x E30	X	X	X	X		X	X
12 x E40 2 x E50 1 x E60		X		X			X	
		X	X	X	X		X	X
		X	X	X	X		X	X
	1 x E70	X		X		X	X	
	4 x TC01	X	X	X	X		X	×
	1 x TC02	X	X	X	X		X	X
	0 x Z01							
Var. unsch. spare parts per		X	X	X	X		X	
unscheduled ass	ignments (wage)	X	XX	X	X	5	X	
Exhaust Heat Exch	anger inspection	X	X					
	EGHE repairs	X	X					
Si	lencer inspection	X	X					
	Silencer repairs	X	X					
	Oxicat inspection	X	X					
	Oxicat renewing	X	X					
Cooling water	pump inspection	XXXXX	X					
Cooling water pump repairs		X	X					
PHE,	cooler inspection	X	X					
PH	IE, cooler repairs	X	X					
Batteries inspection		X	X	X	X		X	X
	Batteries repairs	X	X	X	X		X	X
Gas control line inspection		X X X	X	X	X		X	X
Gas control line repairs		X	X	X	X		X	X
TEM, Switching system inspection		X	X	X	X		X	X
TEM, Switching system repairs		X	X	X	X		X	X
	erator inspection	X	X	X	X		X	X
0	Senerator repairs	X	X	X	X		X	X X X
Pneumatic		X	×	X	X		X	X
Lu	be oil per engine	X	X	X	X			

Included in cost?

- Lube oil?
- Major Overhaul?
- Electrical Items?
- Unscheduled
 Maintenance?
- System Auxiliaries?

Page 19

Thank You For Your Attention!

Mauricio Lopez lopez_mauricio_a@cat.com http://www.catelectricpowerinfo.com/gas/

