ENGINEERED SYSTEMS AND SERVICES Translating Ideas into Sustainable Solutions

Innovative Solutions for Advanced Materials Processing

Clean Technologies for Environment, Climate & Energy

Production Efficiency for Printing & Packaging Systems

Long-Term Experience of VAM Processing Presented by Michael J. Hager, Vice President, Engineering MEGTEC Systems for the Methane Expo 2013

MEGTEC Locations Worldwide

MEGTEC Regenerative Thermal Oxidizers

- Over 4,000 RTOs installed worldwide
- Sizes ranging from 500 to 90,000 scfm
- Single & multiple can designs

MEGTEC Regenerative Oxidizers for VAM Processing

VOCSIDIZER

- Single bed design no combustion chamber
- Electric pre-heat, eliminates need for fuel source
- Modular-stackable design minimizes footprint

<u>VOX-II</u>

- ➤ Two bed design
- High flow capacity minimizes valves/parts
- Chamber bypass facilitates heat recovery

Modular VOCSIDIZER Design for VAM Processing

MEGTEC VAM Proof-of-Concept Sites

1994 - Thorseby Coal Mine, British Coal, UK

2001 - Appin Colliery, BHP, Australia

2008 - Windsor mine, CONSOL Energy, USA

MEGTEC VAM Commercial Installations

2007 – BHP Billton, West Cliff Mine New South Wales, Australia Flow capacity: 250,000 Nm³/hr

2008 - ZhengZhou Coal Mining Group Henan Province, China Flow capacity: 62,500 Nm³/hr

2011 - DaTong Coal Mine ChongQing Province, China Flow capacity of 375,000 Nm³/hr

2013 - Xishan Coal & Electricity, Duerping Middle Station Shanxi Province, China Flow capacity: 450,000 Nm³/hr

MEGTEC VAM Power Plant at BHP Billiton in Australia

- Four VOCSIDIZERS installed in 2007
- Steam heat recovery drives 6 MW turbine
- > Total flow capacity:
- Methane concentration:
- Availability on demand:>99%

250,000 Nm³/hr (only 20% of shaft flow)

0.9 – 1.0 % CH₄

The WestCliff Project was partly Government funded by AGO – Australian Greenhouse Office

VOCSIDIZER Energy Recovery as Superheated Steam

➢ Peak media bed temperatures: 1185 – 1200 ºC

- > Thermal steam power: 17.8 MWth
- Electrical output Average: 120 MWh/d

VOCSIDIZER STEAM CYCLE FOR POWER GENERATION

MEGTEC VAM Power Plant at BHP Billiton in Australia

In full operation since 2007

MEGTEC VAM Power Plant at BHP Billiton in Australia

VAM exhaust duct

n

VOCSIDIZERS

Fan

Stack

Electricity from VAM Power Plant

MEGTE

0.2 % methane needed to maintain oxidation. Energy of concentrations above 0.2 % can be recovered. Interesting combinations of electricity and thermal generation can be achieved.

<u>Example:</u>	800 000 m³/h 1 % CH ₄	72 MW(th) 21 MW(el) (at 30% efficiency)
<u>Example:</u>	800 000 m³/h 0.6 % CH ₄	$ \longrightarrow 36 \text{ MW(th)} \longrightarrow 10 \text{ MW(el)} $ (at 30% efficiency)
		t.

MEGTEC VAM in China ZhengZhou Coal Mining Group, Henan Province

- PDD administrator is EcoCarbone, France
- Commissioned in 2008
- > One (1) VOCSIDIZER installed capacity of 62,500 Nm³/hr
- > Energy recovery in the form of hot water for local use
- First project to be awarded VAM-based CER's (Kyoto related Carbon Credits).

Hot water from VAM Main MEGTEC concept in China

In China typical VAM concentrations are 0.3 – 0.7%

	0.3%	0.5%	0.7%		
Heat straight from bed.	1.5 MW	3.8 MW	6.1 MW		
Water at 70 - 150°C					
For each 125 000 Nm3/h of ventilation air					
Secondary heat- exchanger.	0.5 MW	2.7 MW	5 MW		
Water at 70oC					
Secondary heat- exchanger.	-	-	1.5 MW		
Water at 150oC					

MEGTEC VAM in China at the Da Tong Mine, ChonQing Province, China

- Commissioned in 2011
- > Six (6) VOCSIDIZERS installed as three stacked pairs
- > VAM flow capacity of 375,000 Nm³/hr
- Methane concentration: 0.3 0.5 %

MEGTEC VAM in China at the Da Tong mine, ChonQing Province, China

Includes hot water generation for local use

17 MEGTEO

MEGTEC VAM in China at the Da Tong mine, ChonQing Province, China

- Development by Sindicatum Sustainable Resources
- Total VAM flow capacity of 450,000 Nm³/hr 85% of shaft flow
- Project to be executed in two phases with 4 oxidizers
- > MEGTEC **VOX-II** technology utilized: 2-bed design with gas burner
- > Average CH_4 concentration of 0.57 vol%
- MEGTEC providing full turnkey scope
- Operation to begin in the 2nd Qtr 2013

- Oxidizer pre-heated with a nozzle mix burner
- LPG fuel supplied from one of two cylinder manifolds

LPG cylinder storage

Vaporizer

VAM Processing Site Evaluation

- Evase geometry
- Evase flow rate & fraction to be treated
- Estimated shaft life
- \succ CH₄ concentration
- Fuel type/availability
- Potential needs for heat recovery
- Road access
- Civil requirements
- Power supply V/Hz
- Local codes
- Altitude
- Seismic zone

(VAM exhaust transit time)

>

(LEL sensor response time) + (Isolation damper actuation time)

Critical to install fast acting LEL sensors

Requires long duct run from evase to oxidizer

Thank you!

- Contact information:
- ✓ Michael J. Hager, Vice President, Engineering
- ✓ <u>mhager@megtec.com</u>
- ✓ Visit <u>www.megtec.com</u>
- Inquire at: info@megtec.com

