Overview of Gas Collection and Control Systems

9, December 2010
Novi Sad, Serbia
Overview

- Objectives of LFG Collection/Control
- Biogas Recovery Modeling
- Elements of a LFG collection System
Objectives

- Recover and utilize LFG
- Minimize potential environmental impacts
- Control off-site migration
- Control odors
- Comply with regulatory requirements
Biogas Recovery Potential

- Observation and analysis of landfill operations
- Collection of accurate data
- Use of landfill biogas modeling
 - Selection of appropriate model and inputs based on landfill characteristics
 - Close scrutiny of model results via comparison with results from other landfills (if possible)
- Development of multi-year biogas recovery estimates
Biogas Recovery Modeling

- Biogas Recovery Estimates Are Used For:
 - Developing gas collection system design and sizing requirements
 - Evaluating utilization project feasibility and economics

- Modeling can be Challenging
 - May result in a large source of error in evaluating project system requirements and project feasibility
 - Many models based on U.S. waste profiles
 - Unrealistic biogas recovery projections can lead to investment in uneconomical projects (or neglecting opportunities)

- Average international LFG project performance = 49% (actual recovery / modeled recovery)
Elements of an Gas Collection System

- Network of interconnecting piping
- LFG collection points
 - Vertical extraction wells
 - Horizontal collectors/trenches
 - Connection to existing vents, wells, etc.
- Elements of condensate management
- Flow control
- Blower and flare
- Monitoring systems
Gas Collection and Control Systems

- **Blower** – provides vacuum to extract gas from the landfill and transport it to the flare (or other combustion devices)
- **Flares** – greater than 90% destruction of landfill biogas
- **Monitoring equipment** – used to balance well field and ensure proper operation, track gas flow, and quantify greenhouse gas emission reductions
Vertical Extraction Wells

- Most common approach for recovering LFG
- Install in existing or operational disposal areas
- Waste depth preferable >10 meters
Vertical Extraction Wells

- Install approx 2.5 wells per hectare (~1 well per 0.4 hectare)
- May lose efficiency or not work in landfills with elevated leachate levels
- Maximize biogas recovery per well
 - Wells in deeper areas
 - Wells in areas of new waste
Vertical Extraction Wells
Design Features

- In-refuse wells: 75% of the refuse depth
- Boreholes typically 60 cm to 90 cm in diameter
- Casing is generally PVC or HDPE
- Bottom perforated - start 6 meters below ground surface
- Spacing depends upon “radius of influence” (typical 60 m - 122 m)
Typical Vertical Extraction Well

- Bentonite seal prevents air infiltration

Wellhead incorporates:
- Flow control valve
- Gas sampling port
- Pressure monitoring port
- Flow monitoring port or device (optional)
- Thermometer (optional)
Theoretical Radius of Influence of a Vertical Gas Well

- Radius of influence 2 to 2.5 times well depth
- Increase vacuum to increase the radius of influence
- Variations in vacuum are the operator’s only control tool
Actual Radius of Influence of a Landfill Gas Well

- A well’s radius of influence is unlikely to be ideal:
 - Variations in waste characteristics
 - Interim cover and cell configuration
 - Presence of leachate
Horizontal Collectors

- Alternative approach for LFG recovery
- Can be a better financial option
- Install in existing or operational disposal areas
- Install at a spacing of approx. 30 to 100 meters
- Can be used in landfills with elevated leachate levels
Horizontal Collectors - Design Features

- Install in trenches or place on grade and cover with gravel and waste
- Construct out of approx 100 mm slotted PVC or HDPE pipe
- Alternatively construct out of “nested” 100 mm and 150 mm pipes
Typical Horizontal Collector Arrangement
Laterals and Headers

- Pathway for LFG from wellheads to blowers
- Can be above-grade or underground
- Generally HDPE - PVC sometimes used above-grade
- Pipe sloped to promote condensate drainage
- Unusual drops in vacuum normally due to condensate blockages
- Sized on flow rate and pressure drop
- Evaluate different types of system designs
 - Individual lateral per well
 - Header system with shorter laterals to wells
Condensate Removal

- LFG cools in the LFG collection piping and the moisture condenses out into the piping
- Piping designed to allow condensate to drain
- Traps allow for drainage by gravity
- Sumps collect condensate
Landfill Gas Flaring

- Open flares (candle-stick flares)
 - Can be less expensive
 - Lower destruction efficiency for greenhouse gas projects

- Enclosed flares (ground flares)
 - Higher destruction efficiency
Flare Systems

- May be used in combination with beneficial use system
- Needed during utilization system startup and downtime
- Location should be central to collection system, close to potential end user or utility service, away from trees
- Design with flexibility to handle future gas flows
Blower/Flare Station – Typical Elements

- Moisture separator
- Blowers
- Flare (open or enclosed)
- LFG piping and flame arrestor
- Flow meter
- Methane analyzer (optional)
- Pilot fuel supply
- Control panel (controls both blower and flare)
- Auto shutoff valve
Closing

- Gas collection systems are used for many purposes
- Biogas modeling is important for gas collection system design and operation
- Design the gas collection system to meet the needs of the landfill and project goals