ARPA-E's MONITOR Program

Technology to Quantify Methane Emissions

Dr. Bryan Willson ARPA-E / Colorado State University

March 30, 2016

66 YOU CAN'T MANAGE WHAT YOU DON'T MEASURE.

- W. Edward Deming

"to measure is to know – if you cannot measure it, you cannot improve it" – Lord Kelvin

"In God we trust, all others must bring data." W. Edwards Deming

(c) iStockphoto / Thinkstock

The ARPA-E Mission

Catalyze and support the development of transformational, highimpact energy technologies

Ensure America's

- Economic Security
- Energy Security
- Technological Lead

Creating New Learning Curves

What Makes an ARPA-E Project?

IMPACT

- High impact on ARPA-E mission areas
- Credible path to market
- Large commercial application

TRANSFORM

- Challenges what is possible
- Disrupts existing learning curves
- Leaps beyond today's technologies

BRIDGE

- Translates science into breakthrough technology
- Not researched or funded elsewhere
- Catalyzes new interest and investment

TEAM

- Comprised of best-in-class people
- Cross-disciplinary skill sets
- Translation oriented

Responding to the Natural Gas Boom

Rapid growth in domestic oil and gas production has been driven by advances in horizontal drilling and hydraulic fracturing, allowing the U.S. to tap vast unconventional gas reserves; by 2035, natural gas is expected to surpass coal as the largest fuel burned to generate electricity

U.S. Dry Natural Gas Production, 1990-2040

Electricity Generation by Fuel, 1990-2040

The Environmental Case for Natural Gas

On a lifecycle basis, natural gas emits nearly half the level of greenhouse gases as coal when burned; the challenge is ensuring that environmental risks throughout the supply chain are effectively mitigated

The Importance of Focusing on Methane

Methane – the main component of natural gas – accounts for about one-tenth of U.S. greenhouse gas emissions However, over a 20-year period, one gram of methane has 84 times the global warming potential as the same amount of carbon dioxide

MONITOR Metrics & Targets

Detection Threshold	1 ton per year (6 standard cubic feet per hour)
Cost	\$3,000 per site per year (for basic functionality)
Resulting Leak Reduction	90% methane leakage reduction with a 90% confidence level
False Positives	No more than 1 per year
Mass Flow Rate	Able to estimate mass flow rate within 20% margin of error
Leak Location	Able to estimate location within 1 meter
Communications	Transmits results wirelessly to remote receiver
Enhanced Functionality	Methane selectivity, speciation capability, thermogenic/biogenic differentiation, continuous measurement, enhanced stability

Complete & Partial Solutions to Detection

Complete measurement systems: 6 projects

- Systems that include:
 - 1) Methane emission sensing
 - Leak rate characterization and data analytics
 - 3) Provisions for data quality control
 - 4) Digital communication
 - 5) Enhanced functionality

Palo Alto, CA

Andover, MA

Physical

Sciences Inc.

\ERIS

ECHNOLOGIES

Redwood City, CA

Houston, TX

Partial measurement systems: 5 projects

- Nascent technologies that may be too early in the development process for incorporation into a complete system
- Could significantly contribute to meeting system-level objectives
- Primarily envisioned as advances in detector technology or data analytics

The Portfolio: 3 Technology Categories

Image courtesy of Cuadrilla Resources

Portfolio: **5 Point Sensing Technologies**

Miniature, High Accuracy Tunable Laser Spectrometer for CH₄/C₂H₆ Leak Detection

PROJECT HIGHLIGHTS

- Enables ppb/s sensitivity via simple and robust direct absorption spectroscopy
- Performance meets/exceeds ICOS or CRDS (<1 ppb at 1 Hz) while being order of magnitude smaller and consuming less power (10-30W)
- Compatible with other industry applications that require high accuracy, real-time analyses (e.g. process control, CEMS, environmental/GHG monitoring)

AWARD AMOUNT: \$2.4 million PROJECT PARTNERS: Los Alamos National Laboratory, Rice University

Laser Spectroscopic Point Sensor for Methane Leak Detection

PROJECT HIGHLIGHTS

- Performance of state of the art cavitybased point sensors at reduced cost
- High sensitivity, selectivity, and stability measurements with low maintenance
- Suitable for continuous or intermittent stationary and mobile applications
- Advanced manufacturing and novel design enable significant cost reductions

AWARD AMOUNT: \$2.85 million PROJECT PARTNERS: Colorado State University, Gener8

On-Chip Optical Sensors and Distributed Mesh Networks for Methane Leak Detection

PROJECT HIGHLIGHTS

- Developing novel low cost, on-chip optical sensors with high methane selectivity
- State of the art silicon photonics technology for on-chip TDLAS
- Developing system with self-organizing network of low-power motes
- Cloud-based analytics for source detection and localization

AWARD AMOUNT: \$4.5 million PROJECT PARTNERS: Princeton University, Harvard University, Southwestern Energy

Printed Carbon Nanotube Sensors for Methane Leak Detection

PROJECT HIGHLIGHTS

- Uses scalable low-cost, additive printing methods to print chemical sensor arrays based on modified carbon nanotubes
- Sensor elements with different responses to methane, ethane, propane and other wellhead gases
- Total system costs under \$350 per site per year
- Multiple sensors reduces false positives
- Sensitive to 1 ppm with leak localization within 1 m

AWARD AMOUNT: \$3.4 million PROJECT PARTNERS: NASA Ames Research Center, BP, Xerox Corporation

Coded Aperture Miniature Mass Spectrometer for Methane Sensing

Portfolio: 2 Long Distance Technologies

Frequency Comb-based Methane Sensing

PROJECT HIGHLIGHTS

- High sensitivity (ppb-m) kilometer-scale path length measurements with specificity of FTIR
- Simplifying design to reduce the cost of dual comb spectroscopy
- Multispecies sensing includes CH₄, ¹³CH₄, H₂O, propane, and ethane
- Coupled to large eddy dispersion modeling to provide localization

AWARD AMOUNT: \$2.1 million PROJECT PARTNERS: NIST, NOAA

Frequency Comb-based Methane Sensing

Microstructured Optical Fiber for Methane Sensing

PROJECT HIGHLIGHTS

- Fiber optic sensor is broadly applicable throughout the oil and gas industry, particularly for large-scale infrastructure (such as transmission lines)
- Photonic crystal fiber design will minimize optical losses while permitting ambient gas to enter hollow core

AWARD AMOUNT: \$1.4 million PROJECT PARTNERS: Virginia Tech

Portfolio: 2 Aerial Technologies

···············

Image courtesy of Cuadrilla Resources

UAV-based Laser Spectroscopy for Methane Leak Measurement

PROJECT HIGHLIGHTS

- Continuous leak monitoring with leak quantification and real-time alarm notification
- Two modes of operation: continuous perimeter monitoring and search mode to pinpoint leak location
- Speciation of methane and ethane differentiates thermogenic vs. biogenic emission
- Improved production processes reduce costs of mid-IR Interband Cascade Laser (ICL) sources

AWARD AMOUNT: \$2.9 million PROJECT PARTNERS: Heath Consultants, Thorlabs, Princeton University, University of Houston, Cascodium

UAV-based Laser Spectroscopy for Methane Leak Measurement

Mobile LiDAR Sensors for Methane Leak Detection

PROJECT HIGHLIGHTS

Simultaneous, rapid, and precise 3D topography and methane gas sensing

DBRIDGER

ΡΗΟΤΟΝΙ

- Capable of covering a broad range: a frequency-swept laser beam is transmitted to a topographical target 1-300 m from the sensor
- Potentially able to achieve a minimum leak rate detection of 1 gram per minute
- Estimated between ~\$1,400-2,200 per well per year

AWARD AMOUNT: \$1.5 million

Portfolio: 1 Imaging Technology

Image courtesy of Cuadrilla Resources

Portable Imaging Spectrometer for Methane Leak Detection

PROJECT HIGHLIGHTS

- Miniaturization of Rebellion's Gas Cloud Imager (GCI), a long-wave infrared imaging spectrometer
- Camera will be lightweight and portable

 the size of a Red Bull can and
 capable of being incorporated into
 personal protective equipment
- Data processing uses cloud-based computing architecture that streams results to mobile device

AWARD AMOUNT: \$4.3 million

1st GoGCI Results!

Portfolio: 1 Enabling Technology

Image courtesy of Cuadrilla Resources

Tunable Mid-infrared Laser for Methane Sensing

PROJECT HIGHLIGHTS

- Innovative, low-cost mid-IR laser with VCSEL architecture
- Integrated micro-electro-mechanical system (MEMS) mirror enables a wide tuning range
- Approximately 40x reduction in laser cost, applicable across a wide array of sensors and applications

AWARD AMOUNT: \$1.9 millionPROJECT PARTNERS: Thorlabs Quantum Electronics, Praevium Research, Rice University

Field Testing of MONITOR Technologies

Goal #1: Gauge technical performance

- Independent testing and validation will provide a neutral venue to demonstrate technology and system performance
- **First round testing** (year two) will provide an opportunity to demonstrate technologies outside of laboratory tests; this will ensure technologies are tested in a standardized, realistic environment
- Second round testing (year three) will provide an opportunity to assess previously undemonstrated capabilities, as well as technical gains made since the first round of testing

Goal #2: Engage stakeholder community

- Establishing a testing site also enables MONITOR to materially engage strategic stakeholders early in the program
- This early engagement with industry leaders could facilitate hand-offs and/or post-MONITOR field demonstrations by developers and/or local distribution companies

Selecting a Field Test Site

ARPA-E issued a competitive solicitation seeking proposals from highly qualified organizations and will select a suitable field test host based on the following general criteria:

Technical expertise	Strong capabilities related to testing, evaluating, and validating emissions detection technologies
Experience	Extensive work in the O&G sector, preferably focused on methane emissions detection and/or mitigation
Reputation	Recognized for high-caliber work
Industry exposure	Familiarity with major O&G industry players
Impartiality	Independent and objective
Government experience	Experience working with federal entities in research partnerships
Proximity	Convenient for ARPA-E and performers; relatively easy access to major airport

The MONITOR Timeline: ARPA-E & Beyond

*Subject to change

www.arpa-e.energy.gov