

Presentation on A case of Bundling of Projects for CDM Funding (Nepal Biogas Programme)

Methane to Markets Partnership Expo Taj Palace Hotel,- Delhi, India March 02-05, 2010

BSP is Funded/Assisted Mainly by:

SNV/DGIS

g Pennin Coperine Co

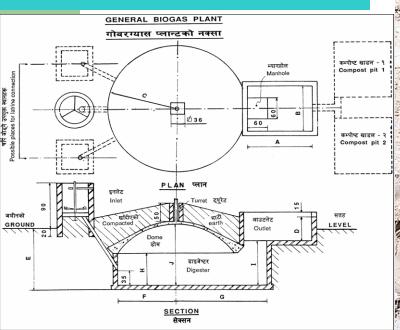
Implemented by:

Biogas Sector Partnership – Nepal (BSP-Nepal)

Presentation by

Prakash Lamichhane

Manager

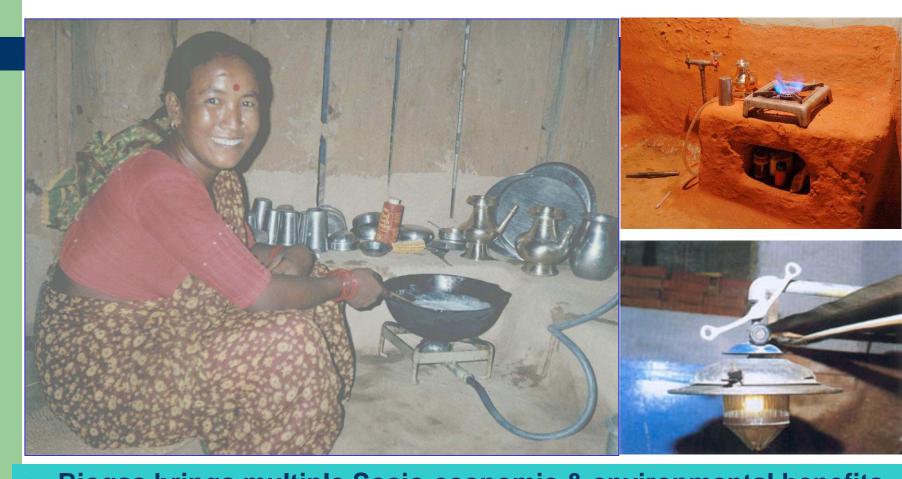

BSP-Nepal

prakash@bspnepal.wlink.com.np

Biogas Plant Design in Nepal (1)

Biogas Plant (GGC 2047 Design)

Plant Drawing


Plant in operation

Life without Biogas ...

Women, Children and Environment Bear the Brunt!

And Life with Biogas.

- Biogas brings multiple Socio-economic & environmental benefits.
- Bio-slurry or bio-compost is equally useful product.

Slurry, As A By-Product: High Quality Organic Fertilizer

Biogas for Better Life!

Pioneering the Technology in Nepal (1)

- In 1955
 - Father Soubolle of St. Xavier's School, Godawari, Nepal Constructed 1st Experimented & Demonstrated Biogas Plant in Nepal.
- In 1968
 - Khadi Village Industry Commission (KVIC) of India constructed 250 cft biogas system at an exhibition in Kathmandu.
- In 1975/76 (Agriculture Year)
 - Promotion of domestic biogas (cattle dung) was initiated by Nepal govt. under DoA and 199 plants constructed in that year.

Pioneering the Technology in Nepal (2)

• In 1977:

- A Biogas Company (GGC) was established as a joint venture among ADBN (now ADBL), UMN and Nepal Fuel Corporation.
- ADBN provided soft loan to users at 6% interest rate for biogas construction.

In 1990

 A fixed dome design (GGC 2047) was recognized as the standard design in Nepal after several research and modifications from a Chinese fixed dome design.

Introduction of Biogas Support Programme (BSP) - 1

- In 1992
 - Biogas Support Programme (BSP) was established by SNV Nepal with funding from the Dutch Government.
- From BSP-III (1997-2003), KfW and Gov't of Nepal also started funding BSP for subsidy part.
- The Phase IV of the national programme BSP (Jul '03 - Jun '09) is being implemented by BSP-Nepal, successor of BSP/SNV.

Benefits of Biogas & Bio-Slurry (1)

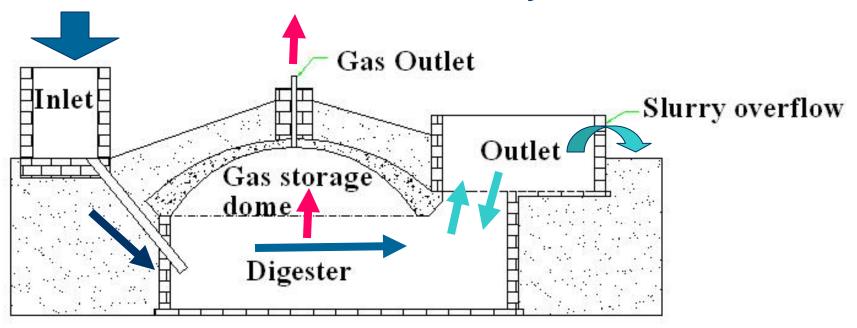
- Clean cooking and lighting energy clean indoor environment, clean utensils, etc.
- Reduced drudgery time and energy saved.
- Saving in kerosene purchase.
- Saving in firewood, agro-waste and dung.
- Improved health, improved children's education, self-esteem, etc.

Benefits of Biogas & Bio-Slurry (2)

- Use of bio-slurry and bio-compost improves agriculture yield and reduces use of chemical fertilizer.
- Toilet construction and connection
 - Improved sanitation and less dependence on cattle dung.
- Green House Gas (GHG) emission reduction and contribution to reduction in global warming.

Introduction of Biogas Technology (1)

- Any organic material when subject to anaerobic fermentation (in absence of oxygen), produces a gas called "biogas".
 - Biogas produced from cattle dung consists of around 60-70% methane.
- Actually, biogas production takes place naturally.
 The technology helps improve production, collection and use of it productively.
- Biogas can be used as an energy source for any purpose from cooking to electricity generation.


Introduction of Biogas Technology (2)

- In Nepal, biogas is produced cattle dung in household biogas plants and used mainly for cooking.
 - Traditionally focused on promotion of such household plants only.
 - Currently, plant sizes of 2, 4, 6 and 8 cubic metres get subsidy.
- There are few larger size (up to 50 cubic metres) institutional biogas plants built in Nepal.
- It is also possible to have community plants (a plant for a number of households).

Biogas Plant Design in Nepal (2)

 A Sectional View of Biogas Digester Showing Feed Inlet, Gas Outlet and Slurry Overflow.

Impact of Climate Change in Nepal

Temperature is Rising and Snow is Melting

- Warming in Nepal is faster than the global average
 - Average annual temperature rise in Nepal = 0.06°C
 - Average temperature rise from 1975 to 2006 = 1.8°C
- Snowline and glacier river receding.
- Warmer and dryer winters.
- Increasing risk of glacier lake burst.

Climate is Changing

- Monsoon is being shifted or irregular.
- Incidence of flash rain increasing; 100 ml/day rainfall days increasing leading to frequent flash flood, etc.

Clean Development Mechanism (1)

- UN adopted United Nations Framework Convention on Climate Change (UNFCCC) in 1992 (the Earth Summit)
 - UN adopted different mechanisms with specific objectives and targets in 1997 (the Kyoto Protocol)
 - Clean Development Mechanism (CDM) is the only instrument under Kyoto Protocol that has to do with the developing world.

Clean Development Mechanism (2)

Objective of CDM

- 1. CDM is an innovative mechanism for North-South cooperation in climate change mitigation. It helps developed countries meet their emission reduction obligation.
- 2. CDM has also the objective of promoting sustainable development in the developing countries.

Initiating CDM in Biogas Sector in Nepal (1)

- In Recognition of BSP's Substantial Social, Economic & Environmental Impacts
 - It was decided to develop CDM Projects in biogas, as early as 2001.
- A consultant was hired in Dec 2002 for preparatory work
 - Baseline, methodology, Project Identification
 Note (PIN) and Project Design Document (PDD)
 were subsequently prepared.

Initiating CDM in Biogas Sector in Nepal (2)

- A Letter of Intent was Signed with the World Bank
 - For its Community Development Carbon Fund (CDCF) in January 2005 for trading at US \$ 4.5 per ton.
- Nepal Submitted its Instrument of Accession to Kyoto Protocol in Sep 2005
 - And it established Designated National Authority (DNA) in the Ministry of Environment, Science & Technology (MoEST) in November 2005.

Initiating CDM in Biogas Sector in Nepal (3)

- CDM Executive Board Could not Approve the Methodology
 - pointing out a number of arguments against including projects that replace non-renewable biomass in CDM.
 - After request, keeping soft corner, the EB did allow registration of the 2 projects that were ready with a total of 19,396 plants (on Dec 27, 2005).
 - The calculation gave 7.4 tons/plant/year
 - But the methodology limited to 4.99 tons.

Initiating CDM in Biogas Sector in Nepal (4)

- Agreement Signed with the World Bank
 - On May 3, 2006 for Sale of 1 million tons of Emission Reduction at the rate of US \$ 7.
 - With this, the projects give ~ US \$ 600,000 as net income, annually.
 - The annual Emission Reduction Report and Community Benefit Report were sent regularly.
 - Verification of first round of Report took place in January 2007.

Fate & Status of 1st Two CDM Projects (1)

- Things Did not Go as Expected
 - Verifier Took over 1 year to submit the report.
 - The EB also took long time to decide and finally informed in August 2008 that the monitoring was not acceptable.
 - The reason was that they wanted Project wise users' survey, instead of one national survey.
- An Appeal was Made in October 2008
 - EB informed after some 6 months that the appeal was accepted.

Fate & Status of 1st Two CDM Projects (2)

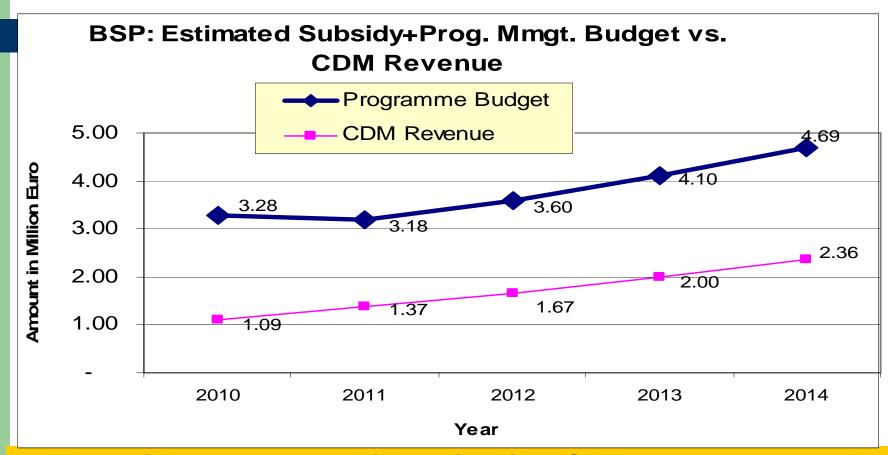
- New Users' Surveys as per Need of EB have been carried out
 - Revised Emission Reduction reports will be submitted soon.
- The World Bank Agreement is not for CER
 - Even in case of failure to get Certified Emission Reduction (CER) from EB, the payment will still come.
- Payment for 2004/05 and 2005/06 Received.
 - US \$ 848,784 (514,786 + 333,998)

Another Battle for CDM in Biogas (1)

- The CDM Executive Board was Asked Developed an Alternative Methodology
 - that requires to assume that if no biogas plants, one would switch to fossil fuels like kerosene.
 - Nepal delegation in the 2006 CoP/CMP in Nairobi,
 Kenya put up a strong lobbying and arguments.
 - Though the hard work saved the prospects, the methodology could not be approved.
 - As per a decision, EB further improved the methodology and recommended to Bali CoP/CMP in December 2007.

Another Battle for CDM in Biogas (2)

- Nepal Delegation Worked Hard in Bali
 - Positive discussion about Reduction of Emission from Deforestation and Degradation (REDD)
- CDM EB Approved the Methodology in January 2008, after Additional Improvement
 - Stricter definition of Non-Renewable Biomass (NRB), Baseline, Leakage, etc.
 - It only gives around 2 tons of CO₂/plant/year.


Another Battle for CDM in Biogas (3)

- Earlier, MoU Signed on Oct 17, '06 with KfW
 - For development of Biogas CDM Project hoping a new methodology to be approved soon.
 - This kind of tie up is required for many reasons
 - For Pre-Financing Project Development
 - Access to Market and Experts
 - Lobbying, etc.
- KfW, AEPC and BSP-Nepal Started to Develop New CDM Projects
 - Consultant hired already with KfW pre-finance for baseline, PIN and PDDs.

New Hope for CDM Revenue (1)

- New Projects being Developed with Programme of Activities (PoA) Approach.
 - This approach substantially reduces the hassle and transaction cost.
 - Once registered, valid for all "Projects" in the "Programme" in next 28 years.
 - ~ 36,000 plants can be registered immediately.
 - Is ready and validation is about to start

Projected Budget of BSP vs. CDM Revenue

 Even with very conservative estimation, CDM can cover around 30 to 50% of the total Budget in Next 5 Years.

Different Biogas CDM Methodologies (1)

Old Methodology

- Methodology I.C.: Switch from Non-Renewable Biomass to Renewable Energy Sources.
- New Methodology
 - Methodology I.E: Switch from Non-Renewable Biomass for Thermal Applications by the User.
- Other Biogas CDM Methodologies
 - Methodology I.C: Replacement of Fossil Fuel by Renewable Energy.
 - Methodology III.D: Methane Recovery in Agricultural and Agro Industrial Activities.

Different Biogas CDM Methodologies (2)

Rationale

- Old Methodology
 - GHG Emission Reduction takes place when users of non-renewable biomass switch to renewable energy like biogas for thermal energy use.
- New Methodology
 - GHG Emission Reduction takes place when users of non-renewable biomass switch to renewable energy like biogas for thermal energy use.
 - And in absence of renewable energy like biogas, the users would switch to fossil fuel like kerosene.

Different Biogas CDM Methodologies (3)

Formula of Old Methodology

- Emission Reduction (ER) Factor for a Biogas Plant in tons of CO₂ eqv. = CO₂ ER from kerosene saving in tons of CO₂ + CO₂ ER of fuel wood saving in tons of CO₂ (factored for Non-Renewable Biomass) + CH₄ ER from fuel wood saving in tons of CO₂ eqv. – CH₄ leakage from biogas digester in tons of CO₂ eqv.
- Net Annual Emission Reduction per Plant
 - Roughly 3 tons of CO₂ eqv. GHGs.

Different Biogas CDM Methodologies (4)

- Formula of New Methodology
 - Emission Reduction (ER) Factor for a Biogas Plant in tons of CO₂ eqv. = Quantity of Biomass in tons that is substituted X Fraction of Non-Renewable Biomass (NRB) X Net Calorific Value (in TJ/ton) of the NRB X Emission Factor (in tons of CO2/TJ) for the projected fossil fuel consumption in the baseline.
- Net Annual Emission Reduction per Plant
 - Roughly 2 tons of CO₂ eqv. GHGs.

VER Market: A Fall Back Position (1)

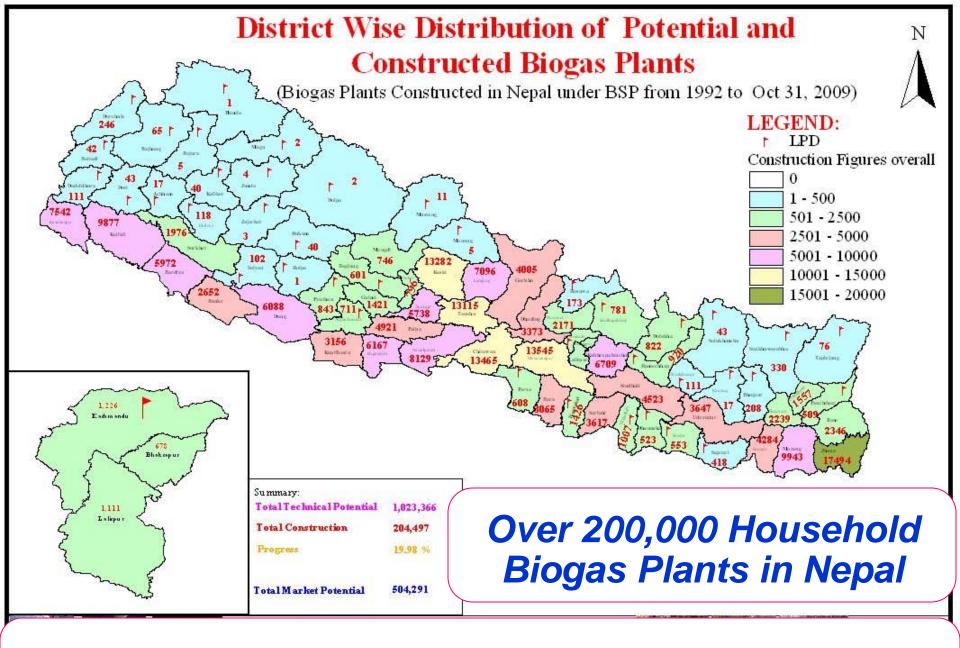
- VER Market is Becoming Substantial and also Regulated in Similar Way as CDM.
 - The price is lower than CDM
 - Some projects are more favoured than others
 - A Gold Standard VER methodology has been developed for Biogas Project.
 - In 2007, a separate project called Gold Standard VER Biogas Project (GSP) started in Nepal with same modality as BSP and funding from WWF.

VER Market: A Fall Back Position (2)

Gold Standard VER Methodology

- Rationale
 - GHG Emission Reduction takes place when users of NRB switch to biogas for thermal energy use.
- Formula
 - Emission Reduction = (Baseline Emission from fuel consumption for thermal energy needs and from animal waste handling) – (Project Emission from the fuel the consumption and from the biogas plant)
- Net Annual Emission Reduction per Plant
 - Roughly 4.02 tons of CO2 eqv. GHGs.

Summing Up (1)


- CDM is Both Opportunity and Challenge.
 - Doing CDM has been like riding a Roller Coaster!
 - Doing it requires a lot of resources, including knowledge and skills to develop and implement.
 - There have been a lot of appreciations and recognitions.
 - Some people criticize us for not doing good enough.

Summing Up (2)

- CDM is Trade and not Aid.
 - If acted in time, there is a huge potential in CDM that can help financing development activities.
 - Market World Could not be as Friendly as the Development World.
 - Taking risk and making Investment in time is the game.
 - Any player has the right to be part of the trade.

Summing Up (3)

- Use of Biogas CDM Revenue
 - After providing subsidy, AEPC draws the right from the user to do CDM & trade
 - The revenue is for continuation of BSP.
 - This revenue is likely to make BSP substantially self-reliant, financially within few years.
- In Case of Old Methodology Revived and or Price Increase
 - A complete financial self-reliance is not impossible.

Thank You