Methane to Markets

Reduced Emission Completions / Plunger Lift and Smart Automation

Oil & Gas Subcommittee Technology Transfer Workshop

January 28, 2009 Monterrey, Mexico

Well Venting Agenda

- Methane Losses
- Methane Recovery
- Is Recovery Profitable?
- Industry Experience
- Discussion

Source: Williams

Methane Losses (U.S.): Gas Well Completions and Workovers

- An estimated 45 Billion cf of natural gas lost annually due to well completions and workovers¹
- An estimated total of 480,000 Bbl condensate lost annually due to venting and flaring

¹Percentage that is flared and vented is not known

Methane Loss During Gas Well Completions

- It is necessary to clean out the well bore and formation following hydraulic fracturing
 - After new well completion
 - After well workovers
- Produce the well to an open pit or tank to collect sand, cuttings and reservoir fluids for disposal
- Vent or flare the natural gas produced
 - Venting may lead to dangerous gas buildup
 - Flaring is preferred where no fire hazard or nuisance

Methane Recovery by Reduced Emission Completions

- Recover natural gas and condensate produced during flow-back following hydraulic fracture
- Portable equipment separate sand and water, processes gas and condensate for sales
- Direct recovered gas through permanent dehydrator and meter to sales line, reducing venting and flaring

Portable REC Equipment

Reduced Emission Completions: Equipment

- Truck or trailer mounted equipment to capture produced gas during cleanup
 - Sand trap
 - Three-phase separator
- Use portable desiccant dehydrator for workovers requiring glycol dehydrator maintenance

Temporary, Mobile Surface Facilities, Source: BP

Reduced Emission Completions: Preconditions

- Permanent equipment required on site before cleanup
 - Piping to well head
 - Dehydrator
 - Lease meter
 - Stock tank
- Sales line gas can be used for energy and/ or gas lift in low pressure wells

Reduced Emission Completions: Low Pressure Wells

- Use portable compressors when pressure in well is low
 - Artificial gas lift to clear fluids
 - Boost gas to sales line
 - Higher cost to amortize investment

Reduced Emission Completions: Benefits

- Reduced methane emissions during completions and workovers
- Sales revenue from recovered gas and condensate
- Improved relations with government agencies and public neighbors
- Improved safety
- Reduced disposal costs

Is Recovery Profitable?

- Partners report recovering 2% 89% (average of 53%) of total gas produced during well completions and workovers
- Estimate 7 12,500 Mcf (average of 3,000 Mcf) of natural gas can be recovered from each cleanup
- Estimate 1- 580 Bbl of condensate can be recovered from each cleanup

Note: Values for high pressure wells

Anadarko Experience

- Produces gas from "tight" formations in Wyoming, Colorado, and Utah
- 1998 to 2005 implemented conventional completions
 - 421 wells/year completed average
 - 2,072 MMcf/year lost average
 - 12 days venting/completion average
- Lost US\$ 82.9 million¹ of gas in 8 years
 - US\$10.4 million/year average

Anadarko Experience

- In 2006 started implementing RECs
- 2006 to 2008 RECs:
 - 613 wells/year completed
 - Net savings: 2,052 MMcf/year
 - Despite 45% increase in well completions
 - Less than 2 hours venting/completion on average
- US\$10.3 million/year² increased revenue

Devon Energy Experience

- Implemented Reduced Emission Completion (REC) in the Fort Worth Basin
- REC performed on 30 wells at an average incremental cost of US\$ 8,700
- Average 11,900 Mcf of natural gas sold vs. vented per well
 - Natural gas flow and sales occur 9 days out of 2 to 3 weeks of well completion
 - Low pressure gas sent to gas plant
 - Conservative net value of gas sold is US\$ 59,500 per well at Mexico gas price¹
- Expected emission reductions of 1.5 to 2 Bcf per year moving forward

¹ Gas valued at US\$5/Mcf

Williams Experience

- Implemented 1,064 completions with flowback from 2002 through 2006
- Total implementation cost: US\$17.41 million
- Recovered a total of 23,700 MMcf (23,700 BBtu¹)
 - Equal to 91,1% recovery
 - Worth US\$118.5 million at Mexico gas value²

- ¹ Assumes 1 Mcf = 1 MMBtu
- ² Gas valued at US\$5/MMBtu

Discussion Questions

- To what extent are you implementing this opportunity?
- Can you suggest other approaches for reducing well venting?
- How could these opportunities be improved upon or altered for use in your operation?
- What are the barriers (technological, economic, lack of information, regulatory, focus, manpower, etc.) that are preventing you from implementing this practice?

Liquid Unloading

- Accumulation of liquid hydrocarbons or water in the well tubing reduces, and can halt, production
- Operators blow wells to atmosphere to expel liquids

Source: BP

Plunger lift recovers liquids with less gas venting

- Conventional plunger lift systems use gas pressure buildups to repeatedly lift columns of fluid out of well
- Fixed timer cycles may not match reservoir performance
 - Cycle too frequently (high plunger velocity)
 - Plunger not fully loaded
 - Cycle too late (low plunger velocity)
 - Shut-in pressure can't lift fluid to top
 - May have to vent to atmosphere to lift plunger

Plunger Lift Cycle

What is the problem?

- Fixed timer requires manual adjustments of the plunger cycle time
 - Not performed regularly
 - Do not account for gathering line pressure fluctuations, declining well performance, plunger wear
- Results in manual
 venting to atmosphere
 when plunger lift is
 overloaded

Source: BP

Smart Automation Well Venting

- Automation can enhance the performance of plunger lifts by monitoring wellhead parameters
 - Tubing and casing pressure
 - Sales line pressure
 - Flow rate
 - Plunger travel time
- Using this information, the system is able to optimize plunger operations
 - To minimize well venting to atmosphere
 - Recover more gas
 - Further reduce methane emissions

Automated Controllers

- Low-voltage; solar recharged battery power
- Monitor well parameters
- Adjust plunger cycling

Source: Weatherford

- Remote well management
 - Continuous data logging
 - Remote data transmission
 - Receive remote instructions
 - Monitor other equipment

Source: Weatherford

Methane Savings

- Methane emissions savings a secondary benefit
 - Optimized plunger cycling to remove liquids increases well production by 10 to 20%¹
 - Additional 1%¹ production increase from avoided venting
- 500 Mcf/year methane emissions savings for average U.S. well

Other Benefits

- Reduced manpower cost per well
- Continuously optimized production conditions
- Remotely identify potential unsafe operating conditions
- Monitor and log other well site equipment
 - Glycol dehydrator
 - Compressor
 - Stock Tank
 - Vapor Recovery Unit

Source: BP

Is Recovery Profitable?

- Smart automation controller installed cost: ~US\$15,000
 - Conventional plunger lift timer: ~US\$7,000
- Personnel savings: double productivity
- Production increases: 10% to 20% increased production
- Production increase from avoided venting: 1%
- Savings =

(MMBtu/year) x (10% increased prod.) x (gas price)

- + (MMBtu/year) x (1% emissions savings) x (gas price)
- + (personnel hours/year) x (0.5) x (labor rate)

Economic Analysis

Non-discounted savings for average well =

(50,000 MMBtu/year) x (10% incr. prod.) x (US\$5/MMBtu)

+ (50,000 MMBtu/year) x (1% emissions savings) x (US\$5/MMBtu)

US\$27,500 savings / year

6.6 months simple payback at US\$ 5/MMBtu

Gas Price (US\$/MMBtu)	3	5	7
Payback (months)	12.3	8.1	6.1
NPV (US\$)	50,077	86,955	123,833

- BP's first automation project designed and funded in 2000
- Pilot installations and testing in 2000
 - Installed plunger lifts with automated control systems on ~2,200 wells
 - ~US\$15,000 per well Remote Terminal Unit (RTU) installment cost
 - US\$50,000 US\$750,000 host system installment cost
- Achieved roughly 50% reduction in venting from 2000 to 2004

- BP designed two pilot studies in 2006 to further improve well scientific control
 - Interviewed control room staff and worked closely with the field automation team leader
 - Established a new procedure based on plunger lift expertise and pilot well analysis
- In mid 2006, "smarter" automation was applied to wells
 - 1,424 Mcf reported annual savings per well
 - Total of 3.1 Bcf/year savings (3,100 Bbtu/year)
 - Worth US\$15.5 million/year¹

8ے

Discussion

- Industry experience applying these technologies and practices
- Limitations on application of these technologies and practices
- Actual costs and benefits