

Processor Best Practices

Energy Management Workshop for Upstream and Midstream Operations

January 17, 2006

Processor Opportunities: Agenda

- Industry Emissions
- Recommended Technologies and Practices
- Selected Methane Saving Opportunities
 - Pneumatic Devices
 - Vapor Recovery Units
- Discussion

Natural Gas and Petroleum Industry Emissions

 Processing sector equipment can emit large amounts of valuable methane gas.

Processing Equipment Emissions

Methane Savings by Emissions Source

 Processors have economically reduced methane losses from all major emissions sources

Recommended Practices

- Eliminate unnecessary equipment and/or systems
 - BP, ConocoPhillips, ExxonMobil, Marathon, and more
- Rerouting of glycol skimmer gas
 - Chevron
- Pipe glycol dehydrator to vapor recovery unit
 - Marathon Oil company
- Inspect and repair compressor station blowdown valves
 - Kinder Morgan Inc.
- Begin DI&M at remote facilities
 - Bay State Gas, Gas Transmission Northwest, Kinder Morgan Inc.

Recommended Technologies

- Recycle line recovers gas during condensate loading
 - Enron Corporation
- Aerial imaging of flowlines to identify leaks
 - Enbridge Energy Partners LP, Duke Energy Field Services, Pioneer Natural Resources
- Convert gas-driven chemical pumps to instrument air
 - ExxonMobil Production Co.
- Aerial imaging of flowlines to identify leaks
 - Enbridge Energy Partners LP, Duke Energy Field Services, Pioneer Natural Resources
- Use of composite wrap repair
 - Colombia Gas Transmission
- Install pressurized storage of condensate
 - Burlington Resources

Selected Methane Reducing Opportunities

Pneumatic Devices

Vapor Recovery Units

Pneumatic Devices: What is the Problem?

- Pneumatic devices are major source of methane emissions from the natural gas industry
 - On average, about 165,000 cubic feet (cf) of methane emissions from
 - pneumatic devices in gathering and boosting stations annually per processing plant1
- As part of normal operations, pneumatic devices release natural gas to the atmosphere
- High-bleed devices bleed in excess of 6 cf/hour
 - Equates to more than 50 Mcf/year
 - Typical high-bleed pneumatic devices bleed an average of 140 Mcf/year
- Actual bleed rate is largely dependent on device's design

Options for Methane Recovery

- Option 1: Replace high-bleed devices with low-bleed devices
- Option 2: Retrofit controller with bleed reduction kits
 - Field experience shows that up to 80% of all high-bleed devices can be replaced or retrofitted with low-bleed equipment
- Option 3: Maintenance aimed at reducing losses
- Option 4: Convert to instrument air

Option 1: Replace High-Bleed Devices

- Most applicable to:
 - Controllers: liquid-level and pressure
 - Positioners and transducers
- Suggested action:
 - Evaluate replacements
 - Replace at end of device's economic life
 - Early replacement

Level Controller

Norriseal

Pneumatic Liquid

Fisher Electro-Pneumatic Transducer

Source: www.emersonprocess.com

Source: www.norriseal.com

Option 1: Cost to Replace High-Bleed Devices

- Costs vary with size
 - Typical costs range from \$700 to \$3,000 per device
 - Incremental costs of low-bleed devices are modest (\$150 to \$250)
 - Methane savings often pay for replacement costs in short periods of time (3 to 6 months)

Option 2: Retrofit with Bleed Reduction Kits

- Applicable to most high-bleed controllers
- Suggested action: evaluate costeffectiveness as alternative to early replacement
- Retrofit kit costs are approximately \$675
- Methane savings typically have a payback time of approximately 6 months

Option 3: Maintenance to Reduce Losses

- Applies to all pneumatic devices
- Suggested action: add to routine maintenance procedures
 - Field survey of controllers
 - Where process allows, tune controllers to minimize bleed
 - Re-evaluate the need for pneumatic positioners
 - Repair/replace airset regulators
 - Reduce regulated gas supply pressure to minimum
 - Routine maintenance should include repairing/replacing leaking components
- Methane savings justify very low costs quickly

Option 4: Convert to Instrument Air

- Most applicable to:
 - Gathering & Boosting stations with high-bleed pneumatic devices and access to electricity
- Major components of instrument air system
 - Compressor
 - Power source
 - Air drier
 - Volume tank

Option 4: Instrument Air Methane Savings:

- Value of Gas = (I_{Au} + U_{Au}) * M * P / 1,000
 - I_{Au}= Instrument Air Use: e.g., 35 control loops
 - Rule of thumb: 1 cf per minute per control loop
 - U_{Au}= Utility Air Use: e.g., assume 10 cf per minute for utilities
 - M = Minutes in a year (525,600)
 - P = Price of Gas: assume \$7/Mcf
- Value of Gas = (35*1 + 10) * 525,600 * 7 / 1,000
 - Value of Gas Saved = \$ 165,000/year

Industry Experience: Unocal

- Unocal installed an air compression system to convert pneumatic device control systems to instrument air in its Fresh Water Bayou facility in southern Vermillion Parish, Louisiana
- It cost \$60,000 in capital and installation
- Unocal reduced methane emissions by over 69,000 Mcf/year
- Recovery of the methane saved Unocal \$485,450/year¹
- The project payback was around 2 months

Vapor Recovery Units: What is the Problem?

- Flash losses
 - Occur when crude is transferred from a gas-oil separator at higher pressure to a storage tank at atmospheric pressure
- Working losses
 - Occur when crude levels change and when crude in tank is agitated
- Standing losses
 - Occur with daily and seasonal temperature and barometric pressure changes

Options for Vapor Recovery Units

- The solution to these emissions are vapor recovery units to capture the emissions
- Recommended choices
 - Rotary compressors require electrical power or engine driver
 - Sliding vane or rotary screw compressors
 - Scroll compressors
- Alternative, niche technologies
 - EVRU[™] replaces rotary compressor and contains no moving parts
 - Vapor Jet system requires high pressure water motive
- Choices not recommended
 - Reciprocating compressors
 - Centrifugal compressors

Vapor Recovery Most Applicable to:

- Steady source and sufficient quantity of losses
 - Condensate oil stock tanks
 - Flash tanks
 - Gas pneumatic controllers and pumps
- Outlet for recovered gas
 - Access to low pressure gas pipeline, compressor suction, or on-site fuel system
- Tank batteries

Methane Savings: Vapor Recovery

- Vapor recovery can capture up to 95% of hydrocarbon vapors from tanks
- Recovered vapors have higher heat content than pipeline quality natural gas
- Recovered vapors are more valuable than natural gas and have multiple uses
 - Re-inject into sales pipeline
 - Use as on-site fuel
 - Recover valuable natural gas liquids

What is the Recovered Gas Worth?

- Value depends on heat content of gas
- Value depends on how gas is used
 - On-site fuel
 - Valued in terms of fuel that is replaced
 - Natural gas pipeline
 - Measured by the higher price for rich (higher heat content) gas
 - Gas processing plant
 - Measured by value of natural gas liquids and methane, which can be separated

Is Recovery Profitable?

Financial Analysis for a conventional VRU Project												
Peak Capacity (Mcf / day)	Installation &	O & M Costs (\$ / year)	Va	lue of Gas ² (\$ / vear)		Annual Savings	Simple Payback (months)	Internal Rate Of Return				
25	35,738	7,367	\$	30,300	\$	22,933	19	58%				
50	46,073	8,419	\$	60,600	\$	52,181	11	111%				
100	55,524	10,103	\$	121,360	\$	111,257	6	200%				
200	74,425	11,787	\$	242,725	\$	230,938	4	310%				
500	103,959	16,839	\$	606,810	\$	589,971	3	567%				

1 Unit Cost plus estimated installation at 75% of unit cost

2 \$7/Mcf x 1/2 capacity x 365

Industry Experience: Chevron

 Chevron installed eight VRUs at crude oil stock tanks in 1996

Project Economics – Chevron									
Methane Loss Reduction (Mcf/unit/year)	Approximate Savings per Unit ¹	Total Savings	Total Capital and Installation Costs	Payback					
21,900	\$153,300	\$1,226,400	\$240,000	3 months					
¹ Assumes a \$7 per Mcf gas price; excludes value of recovered natural gas liquids. Refer to the Natural Gas STAR <i>Lessons Learned</i> for more information.									

Discussion

- Industry experience applying these technologies and practices
- Limitations on application of these technologies an practices
- Actual costs and benefits

Contact Information

- Roger Fernandez
 202-343-9386
 fernandez.roger@epa.gov
- epa.gov/gasstar
- methanetomarkets.org