

BIOGAS DE RELLENOS SANITARIOS Captura y Utilización

Ing. Sandra M. Mazo-Nix Profesional en Proyectos SCS Engineers

Cancún, México 26 de agosto de 2010

Visión General

- Biogás de Rellenos Sanitarios
- Sistema de Captura y Control del Biogás
- Proyectos de Biogás
 - Beneficios
 - Tipos de Proyectos

Biogás

- Se produce por la descomposición de los residuos sólidos
- La cantidad y composición dependen de las características de los residuos sólidos
- El aumento en la cantidad de materia orgánica equivale a un aumento en la generación de biogás
- Puede utilizarse para generar energía
- La producción de biogás se acaba cuando se termina la descomposición

Factores Principales que Afectan la Producción de Biogás

- Cantidad de residuos depositados por año.
- Composición de los desechos.
 - Contenido de desechos orgánicos (fracción biodegradable).
 - Humedad en los desechos.
 - Tasa de degradación de los residuos.
 - Temperatura de la masa de residuos.
- Precipitación anual del sitio.
- Operaciones y mantenimiento que afectan la generación del biogás.
 - Compactación.
 - Cobertura diaria.
 - Control de lixiviados.
 - Cobertura final.

Biogás: Composición Típica

- Metano (CH₄)
 - 50% a 60%
- Dióxido de Carbono (CO₂)
 - 40% a 50%
- Compuestos Orgánicos No-Metánicos (NMOCs)
 - Elementos trazas
- Valor Calorífico
 - 500 Btu/pies cúbico Standard (scf) = 4166 Kcal./m³
- Contenido de Humedad
 - Saturado

Metano (CH₄)

- Incoloro
- Inodoro e Insípido
- Mas ligero que el aire
- Relativamente insoluble en agua
- Altamente explosivo
 - Limite Inferior de Explosividad = 5% en el aire
 - Limite Superior de Explosividad = 15% en el aire

Metano (CH₄)

- ¿Por qué el metano es un gas de efecto invernadero?
 - El metano absorbe la radiación infrarroja terrestre (calor) que, de otro modo, escaparía al espacio (característica de GEI)
- El metano es un GEI 23 veces mas potente por peso que el CO₂
- En cualquier momento, el metano es mas abundante en la atmósfera ahora que en los últimos 400.000 años y 150% mas alto que en el año 1750.

Estimación de la Generación del Biogas – Modelos

- LandGEM(v.3.02) -EPA E.E.U.U.
- Modelo Mexicano de Biogás, 2.0 EPA.
- Modelo Ecuatoriano/Centroamericano de Biogás -EPA.
- Modelo del Panel Intergubernamental de Cambio Climático (IPCC 2006).
- Modelo de SchollCanyon.
- GasSim(UK)

Modelo Mexicano de Biogás 2.0

- Se construyó en base a la versión 2003
- Refleja condiciones locales
- Adopta una estructura que toma en cuenta las condiciones de México
- Usa información de sitios con proyectos en operación
- Permite su funcionamiento con alimentación de información básica

Modelo Mexicano de Biogás 2.0

- El modelo y manual del usuario está disponible en las paginas Web de LMOP y M2M
 - LMOP: www.epa.gov/lmop/index.htm
 - M2M: www.methanetomarkets.org

Uso de los Modelos de Emisión de Biogás

- Determinación del tamaño de los sistemas colectores.
- Evaluaciones y proyecciones sobre el uso del biogás.
- Propósitos regulatorios.

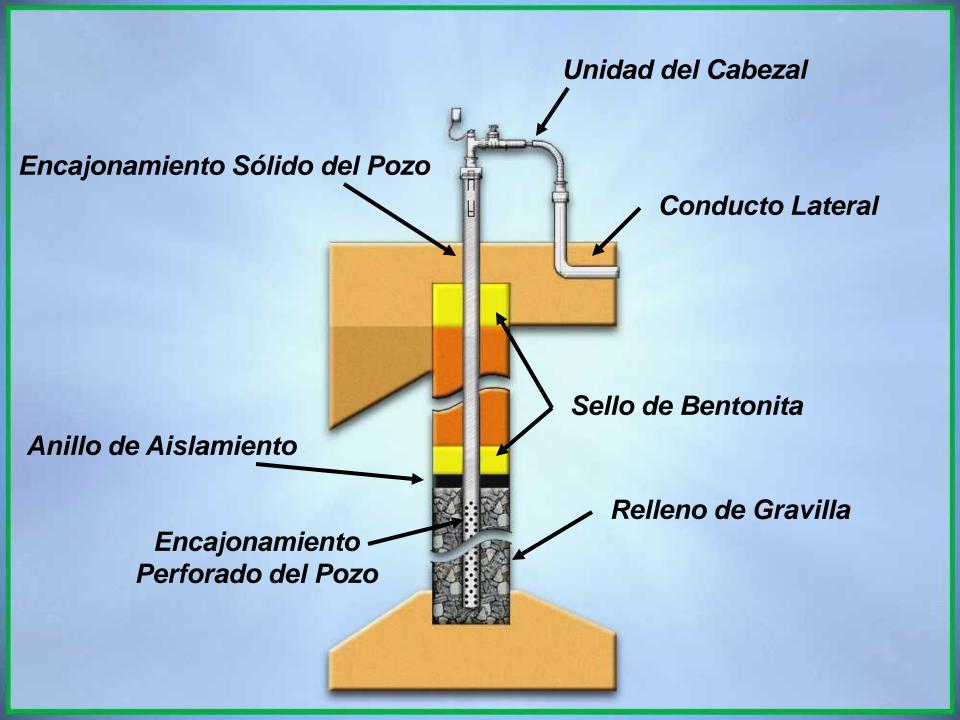
Objetivos de los Sistemas de Control de Biogás

- Control de la Migración
- Control de Olores
- Control de Emisiones
- Protección de las Aguas
 Subterráneas
- Protección de la Cubierta
- Recuperación de Energía

Captura y Control del Biogás

- Modos y métodos de controlar el biogás
 - Pasivo
 - Activo
- Sistema de monitoreo y control del biogás en el perímetro del relleno sanitario

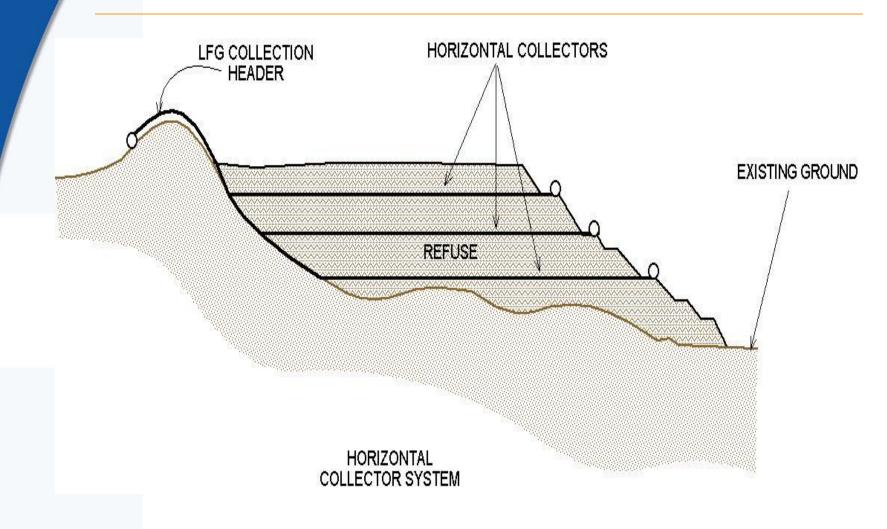
Componentes del Sistema de Captación de Biogás


- Pozo de Extracción Colectores Horizontales
- Cabezal del Pozo de Extracción
- Colector Lateral
- Trampas de Condensado
- Colector Principal
- Cárcamo de Condensado
- Estación de Quemado

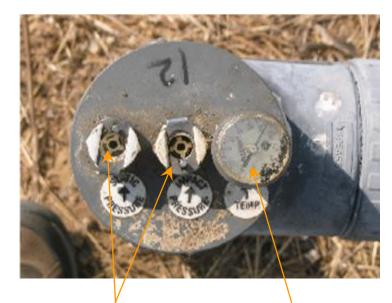
Pozos de Extracción Verticales

- Método mas común de la captura de biogás.
- Se instala en áreas de disposición existentes o en operación.
- Profundidad ideal de los residuos > 10 metros

Colectores Horizontales


- Un método alternativo para la captura de biogás.
- Se instala en áreas poco profundas.
- Se instala en áreas de disposición existentes o en operación.
- Puede ser utilizados en rellenos sanitarios con altos niveles de lixiviados

Arreglo Típico de los Colectores Horizontales



Cabeza del Pozo de Extracción

Válvula para regular succión

Presión

Temperatura

Puertos de Monitoreo

Tubería Lateral y Principal

Tubería Lateral

Tubería Principal

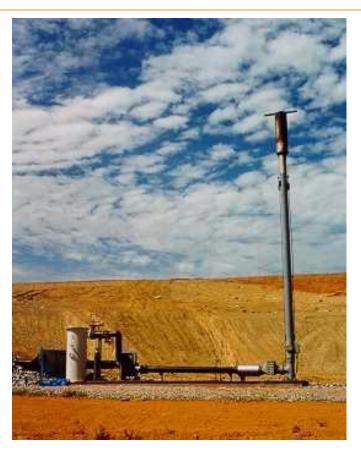
Estación de Quemado

- Eliminador de Humedad
- Bomba de Succión
- Quemador
- Controles
- Sistema de Monitoreo (flujo y calidad de biogás)

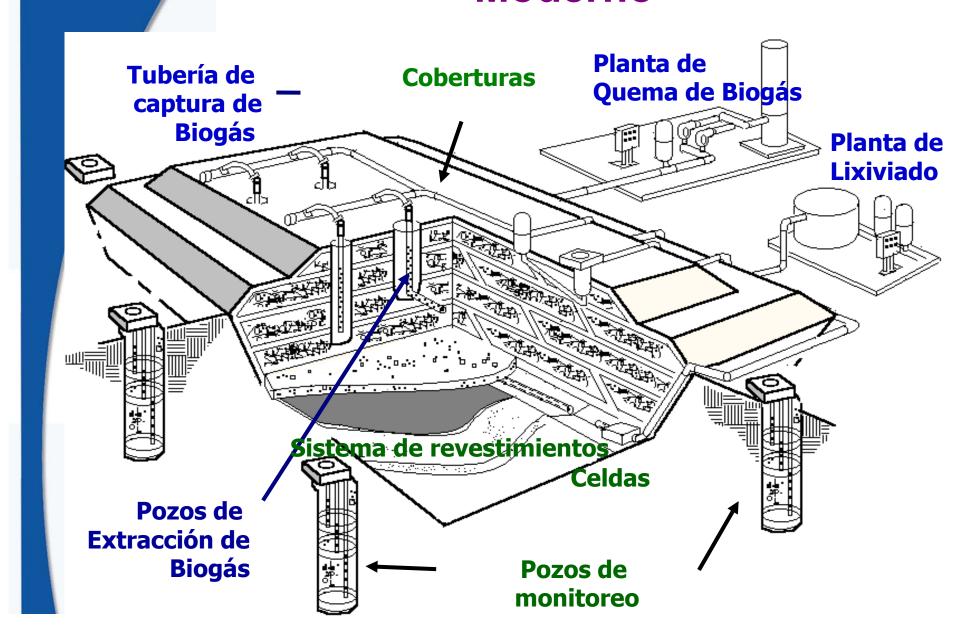
Componentes

Eliminador de / Humedad

Bomba de Succión


Tubería Principal

Tipos de Quemadores


Quemador tipo "Cerrado"

Quemador tipo "Elevado"

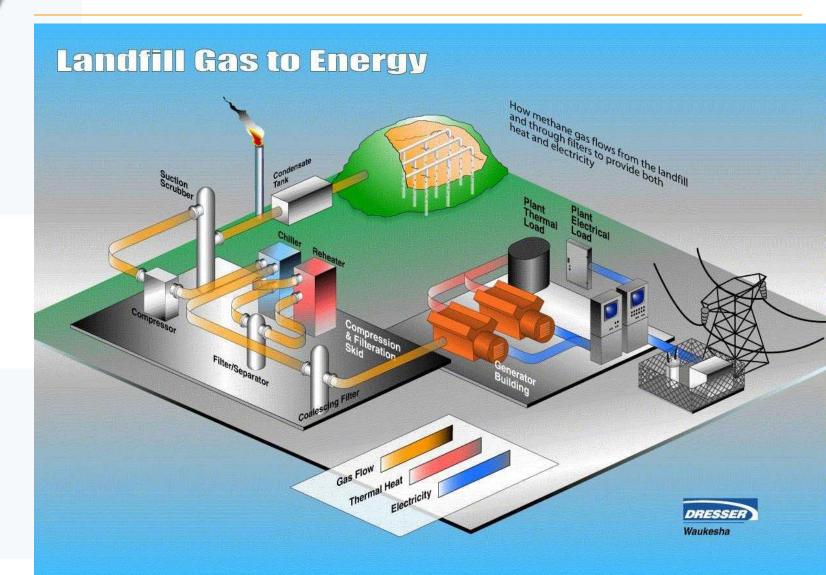
Esquema de un Relleno Sanitario Moderno

Factores que Afectan la Recuperación del Biogás

- Diseño del Sistema del Captación de Biogás
- Diseño del Sistema de Captación de Lixiviado
- Operación y Mantenimiento del Relleno
 - Cubierta intermedia y final.
- Operación y Mantenimiento del Sistema del Biogás
 - Manejo de condensado
- Manejo de Lixiviados y Aguas Pluviales

¿Porque Aprovechar el Biogás?

- Una fuente de combustible local
- La captura y su aprovechamiento son relativamente sencillos
- Fuente de energía renovable
- Suministro constante 24 horas, 7 días a la semana
- Existen tecnologías comprobadas para el uso de biogás
- Recurso energético que se perdería si no se aprovecha
- Ayuda a reducir emisiones al ambiente



Beneficios de un Proyecto de Aprovechamiento

- Destruye el metano y otros compuestos orgánicos en el biogás
- Remplaza el uso de recursos no renovables
- El relleno se puede beneficiar:
 - Tiene otra fuente de ingresos
 - Desarrollo económico local
- El usuario final se puede beneficiar:
 - Reducir costos de combustible
 - Ganar a través de utilización de fuentes renovables
 - Apoyar un estrategia de imagen "verde", acciones sustentables

Esquema Típico de un Proyecto de Uso Energético de Biogás

Beneficios de un Proyecto de Aprovechamiento

- Cada megavatio de generación o de utilización media de 615 m³/hora de biogás en un año es equivalente a:
 - Equivalente ambiental: La siembra de 4.900 hectáreas de árboles o la eliminación de las emisiones de CO₂ de 9.000 autos
 - Equivalente Energético: Prevención del uso de 99.000 barriles de petróleo, o prevenir el uso de 200 vagones de carbón, o proveer electricidad para 650 hogares

¿Como se ha utilizado el biogás anteriormente?

- Tomates y flores
- Cerámica y vidrio
- Automóviles
- Farmacéuticos
- Ladrillos y concreto
- Metal
- Jugo de naranja y manzana
- Biodiesel, GNL y etanol
- Fibra de vidrio y papel
- Mezclilla

- Electrónicos
- Químicos
- Chocolate
- Desecado de lodos sanitarios
- Productos de soja
- Alfombras
- Calor infrarrojo
- Energía verde
- Ahorros en costo
- Aumento en la sustentabilidad

Tipos de Proyectos

Uso Directo - BTU Mediano

Uso Directo - BTU Alta

Relleno Sanitario

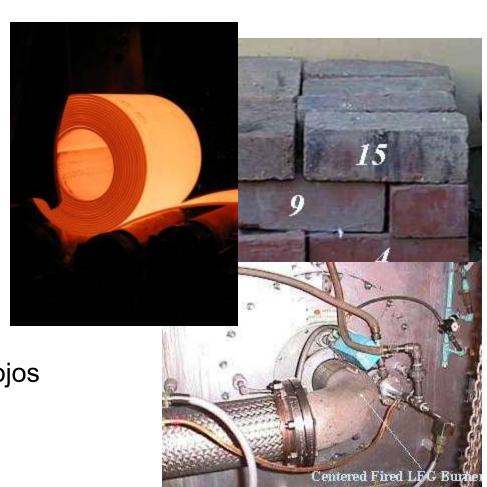
Energía Eléctrica

Opciones de Utilización del Biogás

- Combustible de BTU Mediano. Utilizado directamente o con poco tratamiento para uso comercial, institucional e industrial para abastecer calentadores de agua, hornos, secadores de agregados, incineradores de basura y generadores de electricidad convencionales. Típicamente contiene 50% metano.
 - Evaporación de Lixiviado. Biogás es utilizado como combustible en la evaporación de lixiviado, reduciendo costos de tratamiento.
- Combustible de BTU Alto. El biogás es purificado a niveles del 92 a 99 por ciento de metano, removiendo el dióxido de carbono. Uso final como Gas Natural o Gas Natural Comprimido.
- Energía Eléctrica. Utilizado como combustible para generadores de combustión interna y turbinas para la generación de energía para después ser suministrada a la red.

¿Quien Usa Biogás?

Rolls-Royce



Uso Directo - Btu Mediano

- Calderas
- AplicacionesTérmicas Directas
 - Hornos
 - Calentadores
- Aplicaciones Innovadoras
 - Invernaderos
 - Calentadores Infrarrojos
 - Hornos de Cerámica
 - Evaporación de Lixiviado

Uso Directo – Btu Alto

- Inyección a Gasoducto
- Biogás como Combustible Vehicular
 - Gas natural comprimido (GNC)
 - Biodiesel
 - Etanol

Generación de Electricidad

- Tipo de proyecto mas común en EE.UU.
 - En EE.UU., existen cerca de 1100 MW de capacidad en mas de 250 proyectos
- Venta de la electricidad
 - Vendida a la red
 - A cooperativas o industrias calificadas para comprar directamente
 - Algún consumidor cercano grande
 - Autogeneración o "net metering"
- Tamaño promedio de proyecto: 4 MW (500 kW -50 MW)

Generación de Electricidad

Motor de Combustión Interna ango de 100 kW a 3 MW)

Turbina de Gas (rango de 800 kW a 10.5 MW)

Microturbina (rango de 30 kW a 250 kW)

Calor y Energía Combinados

- Grandes Industrias
- Aplicación en Turbinas y Microturbinas

PREGUNTAS

Ing. Sandra Mazo-Nix

smazonix@scsengineers.com