Methane to Markets

Modeling Landfill Biogas Generation for Different Countries

Alex Stege, SCS Engineers

March 9, 2006 Landfill Methane to Markets Workshop Delhi, India

Presentation Topics

- Landfill biogas modeling overview
- Challenges of international biogas modeling
- Lessons learned from LMOP biogas modeling projects: Mexico and Thailand
- Using biogas modeling to evaluate suitability of landfills in India for project development

Need for International Landfill Biogas Modeling

- Ratification of Kyoto Protocol has accelerated pace of landfill biogas project development, particularly in developing countries (CDM)
- U.S. EPA's Methane to Markets Partnership will further promote landfill biogas-to-energy projects internationally
- Good estimates of landfill biogas recovery needed to evaluate project feasibility and economics
 - Methane emission reductions large source of revenue
 - International landfill biogas modeling in infancy large source of error in evaluating projects

Landfill Biogas Generation

- Factors affecting amount of landfill biogas production:
 - amount of waste
 - type of waste
 - age of waste
 - moisture content
 - temperature
 - pH
 - site conditions

Landfill Biogas Model

- Most widely used model is the U.S. EPA's "Landfill gas generation model" (LandGEM)
- Model equation estimates annual landfill biogas generation
- Model estimates annual landfill biogas recovery

Model Inputs

- Historic and projected waste disposal rates
- Methane decay rate ("k")
- Methane generation potential ("Lo")
- Collection efficiency

Model Equation

Landfill biogas generation equation:

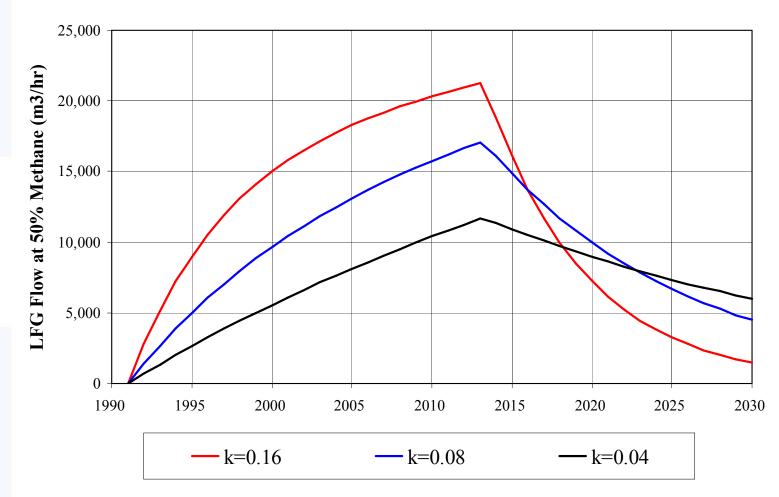
```
\sum_{i=1}^{n} 2 k L_{0} M e^{-kt}i
```

where:

- k = refuse decay rate (1/yr)
- L_0 = methane generation potential (m³/tonne)
- M = mass of waste deposited (tonnes) in year "i"
- t_i = age of waste (years) in year "i"

Model Inputs – Methane Generation Potential (Lo)

- "L₀" methane generation potential (units = m³ methane per metric tonne of waste)
 - Total amount of methane 1 tonne of waste produces
 - Is mainly a function of waste composition amount of organic waste
- Range of observed values:
 - 0 312 m³ methane/tonne of waste
 - U.S. EPA default for U.S. landfills is 100 m³/tonne (not 170 m³/tonne, which is regulatory value)


Model Inputs – Rate Constant (k)

- "k" refuse decay rate constant (units = 1/year)
 - Sets rate of waste decay and methane production
 - Influenced by waste moisture use annual rainfall
- Range of observed values:
 - 0.01/year (desert landfills) to 0.4/year ("bioreactors")

Effect of Varying k

Biogas Generation from a 24,000,000 Tonne Landfill

Model Inputs – Collection Efficiency

Collection efficiency =

<u>Amount of landfill biogas collected</u> Amount of landfill biogas generated

- Collection efficiency based on:
 - Type of facility (landfill vs. dump)
 - Type/design of collection system
 - Extent collection system covers waste volume
 - Waste characteristics permeability
 - Collection system operation

Landfill Biogas Recovery Rate

- Landfill biogas recovery = landfill biogas generation x collection efficiency
- Achievable collection efficiencies at disposal sites:
 - Engineered and sanitary landfills: ~60-90%
 - Open and controlled dump sites: ~30-60%

Challenges of International Landfill Biogas Modeling

- Differences in waste composition
 - Developing countries have higher % of food waste and plastics
 - Developed countries have more paper and wood
 - Effects on model parameters (k and L_0)
 - U.S. based first order model (LandGEM) may be less accurate for developing countries

Challenges of International Landfill Biogas Modeling

- Differences in landfill design & operations developing countries:
 - Excess rainfall infiltration
 - Often shallow sites; limited soil cover
 - Effects on timing of landfill biogas generation
 - Effects on achievable collection efficiency

LMOP Landfill Biogas Model for Mexico

- Partnership between U.S. Government and Mexico.
- Model is based on the LandGEM, with modifications to the k and Lo values to be suitable for Mexico's landfills.
- Model use demonstrated at Monterrey workshop in December 2003
 - Model and user's manual provided

Thailand Project

- Partnership with World Bank
- Evaluated project feasibility through the preparation of landfill biogas models for 56 disposal sites
- World Bank Landfill Biogas Training Workshop, Bangkok: April 29-30, 2004
 - Presented results of modeling work
 - Conducted workshop on landfill biogas utilization
- Landfill site visits: April and May 2004
- Revisions to models for selected sites based on observed site conditions

Thailand Landfill Site Visits

Phitsanulok Landfill

Thailand Landfill Site Visits

Lessons Learned: Model Problem #1

- Model less accurate when waste stream is very different from U.S.
- Very high food waste (56%) component in Thai waste causes very rapid decay
 - Food waste includes high water (inert) weight, which requires using a lower Lo
 - Use of a low k may under-estimate peak and overproject long-term potential after site closure
 - Use of high k may over-estimate peak

Solution to Model Problem #1

- Adjust Lo to account for water (inert) weight as well as organic content of waste
 - U.S. default Lo = 100 m³/tonne
 - Thai Lo = $78.4 \text{ m}^3/\text{tonne}$
 - Delhi Lo = 64.3 m³/tonne
 - Mumbai Lo = 68.7 m³/tonne
- Develop composite model with 3 k values:
 - Fast-decay organic waste (food); k = 0.1 to 0.4
 - Medium-decay organic waste (paper); k = 0.02 to 0.08
 - Slow-decay organic waste (textiles); k = 0.005 to 0.02

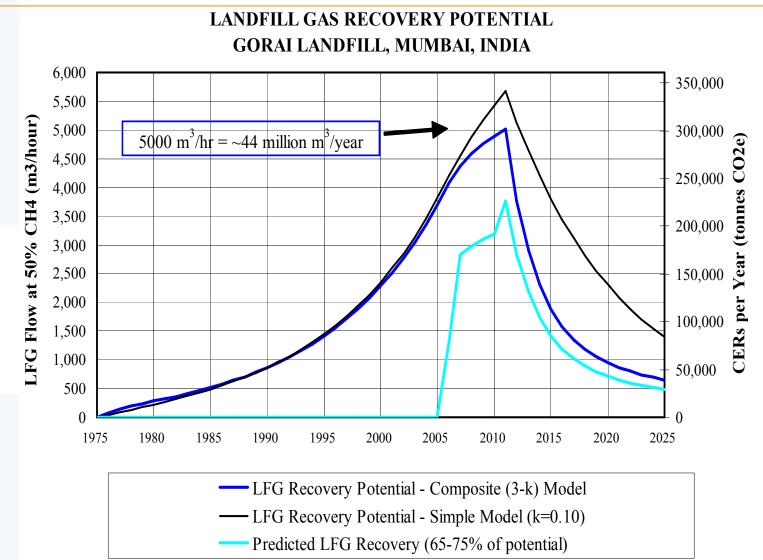
Lessons Learned: Model Problem #2

- Model less accurate when landfill design (dump sites) very different from U.S.
- Site visits found broad, shallow fill areas and/or little soil cover
 - Delays in start of anaerobic conditions
 - Problems and/or delays in achieving expected collection efficiency
 - LandGEM assumes generation follows 1 year lag after waste placement, with no waste decay during this period

Solution to Model Problem #2

- Incorporate delays in landfill biogas generation and recovery into model
 - Assume aerobic waste decay until adequate waste depth or soil cover to create anaerobic conditions
 - Assume additional delays in new sites until waste depth adequate for installing extraction wells

Lessons Learned: Model Problem #3


- Leachate buildup common problem in developing countries
- High rainfall and waste moisture content, and poor runoff control lead to liquid build-up
 - Vertical extraction wells become ineffective when filled with leachate
 - Significant declines in collection efficiency

Solution to Model Problem #3

- Need to use conservative model collection efficiency assumptions
- Field investigations (pump test) can indicate extent of leachate problem
- Modifications to collection system design to address leachate problems:
 - Equip vertical wells with leachate pumps
 - Greater reliance on horizontal collectors

Methane to Markets

Assessing Project Potential – Gazipur Landfill, Delhi

Conclusions

- LMOP providing technical assistance workshops promoting international landfill biogas projects
 - Development of an landfill biogas model for Mexico
 - Landfill biogas modeling and project feasibility assessment for Thailand sites
 - Model can be applied to India sites Gorai and Gazipur examples

Conclusions

- Large uncertainties in international landfill biogas modeling despite growing demand
 - Need models to account for varying waste composition and site characteristics
 - Collection efficiency estimates need to account for leachate in extraction wells
 - Field testing can provide site-specific information and lower uncertainties

Next Steps and for More Information

- Market/tailor LMOP's international landfill biogas model and training to developing countries (<u>www.methanetomarkets.org</u>)
- Mexico landfill biogas model available at: www.epa.gov/lmop/international.htm
- World Bank information on Thailand available at: www.worldbank.or.th