GMI Municipal Wastewater Subcommittee Meeting

Singapore, 2012

Chris Godlove United States Co-Chair Wastewater Subcommittee Global Methane Initiative (GMI)

Goal of Subcommittee

- Develop, promote, and facilitate strategies for the abatement, recovery, and use of wastewater methane through:
 - Identification of opportunities.
 - Technology and best practice development, demonstration, deployment, and diffusion.
 - Implementation of effective policy frameworks.
 - Identification of ways and means to support investment.
 - Removal of barriers to collaborative project development and implementation.

Subcommittee Background

- Initially raised/discussed at the January 2009 Steering Committee meeting.
 - Steering Committee tasked ASG with developing a scoping paper to assess the potential for including wastewater in the Partnership.
- ASG presented paper at the September 2009 Steering Committee meeting.
 - Based on findings, the Steering Committee recognized this sector had potential to achieve methane capture and utilization in the near term.
- Wastewater Task Force created in March 2010

Subcommittee Background (Cont.)

- Wastewater Task Force held two teleconference meetings in July and October 2010, and met inperson in Venice, Italy in November 2010.
- Due to continued strong interest, Steering Committee delegates officially elevated the Wastewater Task Force to the Municipal Wastewater Subcommittee in October 2011 in Krakow, Poland.

Emissions from Wastewater

- Methane is emitted during the handling and treatment of municipal wastewater, which is comprised of approximately 60% methane and 40% CO₂.
- The organic matter in wastewater produces methane when it decomposes anaerobically.
 - Centralized aerobic wastewater treatment systems (with or without anaerobic sludge digesters) emit small and incidental amounts of methane.
 - Anaerobic systems such as lagoons, open sewers, septic systems, and latrines yield considerable methane emissions.

Emissions from Wastewater (Cont.)

- Wastewater is the fifth largest source of anthropogenic methane emissions, contributing approximately 4% of total global methane emissions in 2010.
- China, Nigeria, Mexico, the United States, and Indonesia are the largest emitters and combined to account for 60% of the world's methane emissions from wastewater in 2010.
- Global methane emissions from wastewater are expected to grow by approximately 18% between 2010 and 2030.

Emissions from Wastewater (Cont.)

Methane Emissions from Wastewater: 2000–2030

Source: U.S. Environmental Protection Agency (USEPA). 2011. *Draft Global Non-CO*₂ *Emissions Projections Report: 1990–2030.* Washington, D.C.: USEPA, OAR, Climate Change Division. EPA 430-D-11-003. Obtained at:

http://www.epa.gov/climatechange/economics/downloads/EPA_NonCO2_Projections_2011 _draft.pdf

Clean Energy Benefits

- Cost-effective technologies that deliver clean energy from this source are widely available.
- Benefits of using wastewater digester gas include:
 - Energy cost savings from the utilization of wastewater treatment gas.
 - Stabilized energy costs and production (i.e., protection from the volatility of gas and electricity prices).
 - Progress toward national goals for use of renewable energy.
 - Enhanced energy security from reduced vulnerability to power grid interruptions.
 - Reduced GHG emissions from avoided venting directly to the atmosphere, and from flaring or utilization.
 - Improved local air and water quality.

Mitigation Options

- Mitigation options include:
 - Anaerobic sludge digestion (new construction or retrofit of existing aerobic treatment systems).
 - Biogas capture systems at existing open air anaerobic lagoons.
 - New centralized aerobic treatment facilities or covered lagoons.
 - Optimization of existing facilities.

Challenges/Barriers

- Lack of data on emissions produced in sector.
- High initial capital costs and lack of financing.
- Lack of awareness of mitigation technologies.
- Lack of local capacity to design and maintain systems.
- Site-specific **design** characteristics.
- Utility policy barriers.
- Limited onsite demand for electricity or heat.

Areas of Potential Engagement for Subcommittee

- Identify methane recovery opportunities and describe available technologies and best practices. <u>(awareness)</u>
- Conduct market assessment. (data)
- Discuss country-specific needs, opportunities, and priorities. (awareness)
- Identify project finance opportunities and mechanisms. <u>(finance/ capital costs)</u>
- Support the analysis and documentation of technical and economical options for methane emissions reduction. <u>(awareness)</u>
- Document successful case studies <u>(awareness)</u>
- Create country-level project databases (data)
- Compile information on feasible projects and direct to financiers or project developers. <u>(finance/ capital costs)</u>
- Organize industry or task force within country. (capacity)

