# Methane to Markets

Enteric Fermentation and Rice Cultivation: Options for the M2M Partnership

Ashley King Co-director, Administrative Support Group

> 28 January 2009 Monterrey, Mexico



## **Overview**

- Background
- Methane Emissions from Agriculture
- Enteric Fermentation
  - The Basics
  - Mitigation Options
  - Barriers to Technology Deployment
  - Key Organizations
  - Options for M2M Engagement
- Rice Cultivation
  - The Basics
  - Mitigation Options
  - Barriers to Technology Deployment
  - Key Organizations
  - Options for M2M Engagement
- Barriers to Project Development
- Case Study
- Conclusions and Observations
- Questions for Discussion



## Background

- October 2007
  - M2M SC requested ASG to prepare a white paper outlining additional agricultural methane mitigation opportunities.
  - ASG paper focuses on rice cultivation and enteric fermentation, the largest sources of agricultural methane
- November 2008
  - UNFCCC's Ad-hoc Working Group on Long Term
     Cooperative Action (AWG-LCA) issued a report titled
     "Challenges and Opportunities for Mitigation in the Agricultural Sector"



## The Agriculture (Ag) Sector

- Agriculture currently accounts for about half of global anthropogenic methane emissions, and 10-12% of global anthropogenic GHGs.
- Emissions from agriculture increased 17% from 1990-2005
- Food production is expected to double in the next 30 years, with corresponding increase in methane emissions.
- Policies and measures to mitigate emissions from agriculture require balancing a variety of goals including:
  - maximizing production and profitability,
  - ensuring food security,
  - mitigating other environmental impacts,
  - reducing GHG emissions.
- Reducing absolute global anthropogenic methane emissions will be challenging, but reductions in emissions per unit of production can be achieved.



## **Global Methane Emissions from Agriculture (EPA 2006)**



#### Total Global Emissions ~6.8 Gt CO2e/yr



## **Sector Reduction Potential**

- In 2030, the technical mitigation potential\* for Ag will be 4.5 – 6 Gt CO2e (IPCC, 2007)
  - 9% through improvements in rice management and livestock and manure management.
- Economic mitigation potential\*\* for Ag overall in 2030
  - At **\$20** per ton CO2e is estimated to be **1.5-1.6** GtCO2e/yr
  - At \$50 per ton CO2e is estimated to be 2.5-2.7 GtCO2e/yr
  - At \$100 per ton CO2e is estimated to be 4-4.3 GtCO2e/yr

## **Enteric Fermentation Basics**

- Ruminant animals contain bacteria in their digestive systems that break down cellulose resulting in more energy availability for the animal.
- Methane emissions from the rumen represents wasted feed energy.
- Major strategies for reducing emissions in near and long term include:
  - 1. Improving feed efficiency
    - In areas where forage is poor and animals have nutrient deficiencies mitigation strategies can lead to increased production
    - Will most likely lead to reductions in emissions per unit product but increases in emissions per animal
    - Improved feed efficiency may lead to greater N2O emissions from manure
    - Best practices must be adapted to site specific variations to improve feed/forage quality
  - 2. Changing the ecology of the rumen to reduce methane formation
  - 3. Improving herd management
- Strategies should consider corresponding N<sub>2</sub>O emissions as well as life cycle emissions of feed processing.



## Mitigation Options for Enteric Fermentation per Production Unit

|                                 | Near Term                                                                                                                                                                                           | Long Term                                                                                                                                                                           |
|---------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Improving<br>Feed<br>Efficiency | <ul> <li>Improving quality of forage/feed</li> <li>Intensive grazing</li> <li>Mechanical feed processing</li> <li>Nutrient feed supplements</li> <li>Administering hormones</li> </ul>              | <ul> <li>Supplementing feed with fats<br/>and oils</li> <li>Supplementing feed with<br/>propionate precursors</li> <li>Supplementing Feed with<br/>secondary metabolites</li> </ul> |
| Changing<br>Ecology of<br>Rumen | •Administering antibiotics                                                                                                                                                                          | •Administering anti-methanogen vaccines                                                                                                                                             |
| Herd<br>Management              | <ul> <li>Balancing herd supply versus demand</li> <li>Improving reproductive productivity and efficiency</li> <li>Improving genetic characteristics</li> <li>Increasing animal longevity</li> </ul> | •Decreasing animal-based protein consumption                                                                                                                                        |



## Barriers to Mitigation Technology and Practice Deployment

- Cost
- Lack of Training
- Local Availability of Mitigation Technologies
- Policy and Cultural Barriers



## **Organizations Working on Enteric-Climate Connection**

- Food and Agriculture Organization (FAO)
- Commonwealth Scientific and Industrial Research Organization of Australia (CSIRO)
  - Developing a vaccine (could reduce emissions 30% but success is not certain)
- EU's Livestock Environmental and Development (LEAD) Initiative
- Livestock Emissions and Abatement Research Network (LEARN)
  - International research network to facilitate the development of cost effective GHG mitigation options
  - Active program of conferences on measurement



## **Options for M2M Engagement**

- Assist in developing of more detailed inventory information in developing countries
- Work to develop and/or promote methodologies that could be approved by CDM
- Along with partnering organizations, develop, disseminate, and provide capacity building for best practices that reduce methane emissions but also improve profitability and improve sustainability of ruminant livestock.





## **Case Study: India**

- Methane from cattle represent about 65% of India's total methane emissions
- 70% of cattle are owned by small farmers and landless laborers, and feed on poor feed/forage.
- Regional programs to improve herd management have reduced the number of cattle in India by 15% between 1997-2003 while boosting milk production.
- Analysis indicates that costeffective feed additives could reduce emissions by 10-20%.
- Effect of these additives on N20 emissions from cattle remains uncertain.



#### **Cattle Population and Milk Production 1997-2003**



## **Rice Cultivation Basics**

- Rice is critical to the health and well being of the majority of the world's population
  - 90% of rice paddies are in Asia, 60% in India and China alone.

### Methane emissions are affected by:

- Length of time paddies are flooded
  - Draining fields can reduce methane but can cause higher  $N_2O$  emissions
- Soil amendments
- Tillage
- Rice cultivar (genetics)
- Soil characteristics
- Climate



For rice cultivation

Global Water management systems



## **Rice Mitigation Strategies**

- Mid-season drainage of rice paddies
  - Can cause increased emissions of N2O
- Direct Seeding
- Chemical Fertilizers
- Use of Different Rice Cultivars
- Improved Tillage and Crop Management Practices



## **Rice Cultivation Mitigation Potential**

- Demand is expected to grow sharply in the future (10% by 2015)
- In 2010, 11% of emissions could be reduced at no cost.

|                                     | 2010           |                 | 2020           |                 |
|-------------------------------------|----------------|-----------------|----------------|-----------------|
|                                     | <u>\$0/ton</u> | <u>\$30/ton</u> | <u>\$0/ton</u> | <u>\$30/ton</u> |
| Reduction<br>Potential<br>(MTCO2eq) | 109            | 226             | 114            | 238             |



## **Barriers to Rice Mitigation Options**

- Reduced Yield and Field Fertility
- Limited Applicability to Different Types of Rice Fields
- Technical Capacity
- Costs
- Conflict with Cultural Practices
- Large Number of Farmers Involved



## Key Organizations Working on the Rice-Climate Connection

- International Rice Research Institute (IRRI)
  - The premier international rice research organization with staff in 14 countries in Asia and Africa.
  - Mission is to reduce poverty and hunger, improve the health of rice farmers and consumers, and ensure that rice production in is environmentally sustainable.
  - Engaged in many research projects related to methane emissions from rice
- Consultative Group on International Agricultural Research (CGIAR)
- International Water Management Institute (IWMI)
  - Supports research on mid-season drainage and other water conservation techniques
- Food and Agriculture Organization (FAO)
  - International forum where countries can debate policy
  - Sponsored the 2004 International Year of Rice and has been supporting tech transfer in rice production since
- Indian Agricultural Research Institute (IARI)
  - Credited with devising collection devices for measuring methane flux from rice fields.
  - Recent projects include evaluating methane and nitrous oxide emission from rice growing regions of India and assessments of mitigation options.
- GEF Small Grants Programme (SGP)



## **Options for M2M Engagement**

- Assist in developing more detailed inventory information in developing countries
- Along with partnering organizations, develop, disseminate, and provide capacity building for best practices that reduce methane emissions (and are N<sub>2</sub>O neutral) as well as improve crop yield and water use efficiency.





- Agriculture in Vietnam contributes about 30% of the national GDP
- GEF/SGP project pilot project
- 12 training courses for 20 irrigation workers and 100 households on water management regimes for rice paddies
- Reduced methane emissions and increased yields
- Success based on good coordination and harmonization with local agricultural extension work
- Could be replicated elsewhere in the country

## **Barriers to Project Development**

- In addition to barriers to technology and best practice deployment, there are also unique barriers to project development for these sources compared to other M2M sectors, including:
  - Development of baseline scenarios (high site level specificity, etc.)
  - Uncertainties in persistence of reductions and monitoring protocols
  - Methane mitigation strategies may lead to higher emissions of other GHGs (eg N<sub>2</sub>O)
  - No methane use opportunities
- As a result, no rice or enteric projects have been approved through the CDM.

## **Observations and Conclusions**

- Enteric fermentation and rice cultivation are very significant sources of methane emissions.
- As compared with current M2M sectors, there is more uncertainty in the quantification of the magnitude and persistence of emission mitigation measures.
- There are best practices that can be implemented in the near term that can also improve production and/or deliver substantial environmental co-benefits.
- As compared with current M2M sectors, there is greater regional variability in best practices and approaches.
- Developing better inventories and methodologies for quantifying reductions is critical for both sectors.
- The organizations and experts for these sectors are quite different from those in the current Ag Subcommittee and from each other.
- Coordinating with these organizations and experts and leveraging their efforts with these sources is critical.



## **Questions for Discussion**

- Does the Steering Committee wish to engage in mitigation efforts from these sources and direct further work to identify how M2M could play a role?
  - Ex. Promoting inventory development, co-benefit best practice programs
- Should M2M attend the UNFCCC workshop to observe and report back on potential opportunities for engagement?
- Should the ASG and interested Steering and Agriculture Subcommittee delegates prepare a proposal on how to modify the TOR to include new Agriculture sources for review at the next Steering Committee meeting?