

Financing Opportunities for Projects in Agriculture Sector

14 May 2007, Buenos Aires Zarina Azizova & Roberto Aiello World Bank Carbon Finance Unit

Outline

Advanced manure management system options

- Rules of thumb for estimation of emission reductions
- Case studies

Financing opportunities through:

- Clean Development Mechanism (CDM)
- World Bank Lending Programs

GHG emissions in agriculture sector

Animal manure: CH4 and N2O emissions

Current practice:

Manure storage methods:

Solid, dry, liquid, pits, deep litter, open anaerobic lagoon

CDM project:

Manure treatment system:

- Anaerobic treatment with methane recovery/utilization
- Combustion of manure
- Aerobic treatment

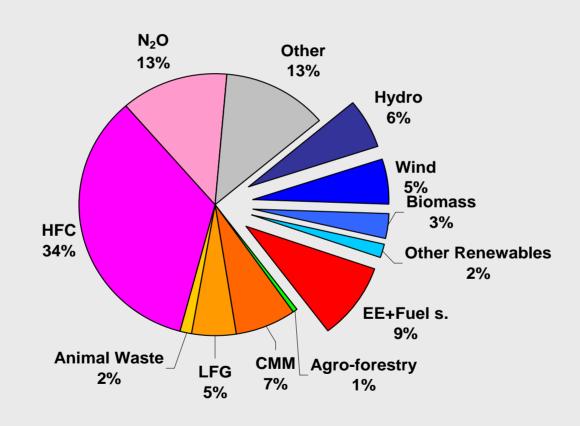
Transitions between these alternatives reduces CH4 and N2O emissions.

Potential projects under Clean Development Mechanism

- Anaerobic digester +flaring with or without power generation
- Covered anaerobic lagoons + flaring with or without utilization of biogas
- Aerobic treatment of animal manure (composting)
- Combustion of poultry litter +power generation

Approved CDM methodologies

 ACM0010 – Methodology for GHG emission reductions from manure management systems


Project with emission reductions of less then 60kt/y:

- AMS.III.D methane recovery in agricultural and agro industrial activities
- AMS III.E avoidance of methane production from biomass decay through controlled combustion

All above methodologies follow 2006 IPCC Guidelines

Share of agriculture projects in CDM pipeline

Jan. 2006 to Dec. 2006

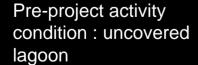
Rule of Thumb for ER Estimation

(Annual Average Temperature >= 10 C)

 $E_{CH4,y} = GWP_{CH4,y} * D_{CH4} * MCFj * B_{o,LT} * N * VS_{LT,y} * MS\%_{Bl,j}$

Animal type Parameter	Breeding Chicken	Broiler	Market Swine	Dairy Cow
GWP _{CH4}	21	21	21	21
Dcн4 (t/m3)	0.00067	0.00067	0.00067	0.00067
MCF (%)	0.7	0.7	0.7	0.7
Uncertainty (%)	0.94	0.94	0.94	0.94
MS%	1	1	1	1
Npopulation (head)	1	1	1	1
B _o (m3 CH4 /kg_dm)	0.39	0.36	0.29	0.24
VS _{population} (kg-dm/animal/day)	0.02	0.01	0.30	5.4
E _{CH4,y} (tCO2e/year)	0.026	0.012	0.29	4.38

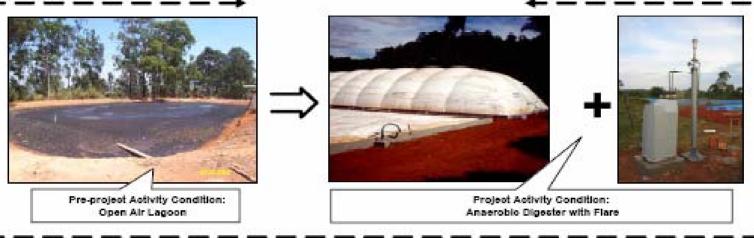
World Bank Project: Minhe Poultry Manure to Power Project


- Total chicken population: 3.6 million broiler & 1.4 million breeder
- Daily fresh manure 500 tons with 20% of total solid
- Waste water of 1000 ton from flushing the chicken barn
- Current practice of manure management: uncovered lagoon
- Proposed project: Anaerobic Digester + Co-generation
- Total Investment: 5.2 million USD
 - O&M Cost: 715,000 USD
 - Revenue w/o carbon: 1 million USD
 - Revenue w/ carbon: 1.9 million USD

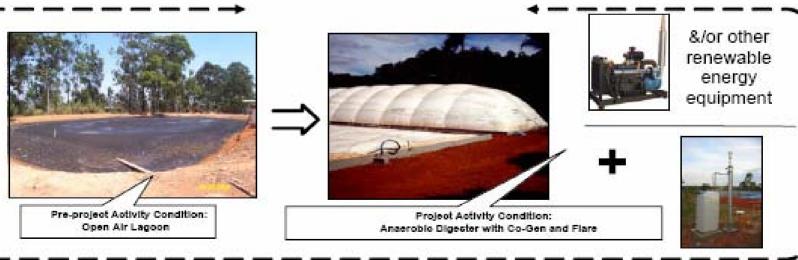
	Without Carbon	With carbon
IRR	2.38%	18%
NPV (discount rate=9%)	-2.3 million USD	4.3 million USD
Payback Period	20 year	5.6 year

Case Study: Minhe Poultry Manure to Power Project

Project activity condition: Biogas digester with cogeneration and aerobic treatment of liquid residue



Methane recovery from covered anaerobic lagoons, Mexico



- Current practice: open anaerobic lagoon
- CDM project: lined covered lagoon with HDPE geomembrane
- Applicable methodologies: ACM10 & AMS.III.D
- Installed costs: USD 150,000 (without power generator)
- Operational costs: USD 2500
- Number of heads: 73,000 swine
- Estimated ERs: 61k tons of CO2e per annum

Minimum Configuration - Open Lagoon to Ambient Temperature Anaerobic Digester with Flare

Optional upgrade - Open Lagoon to Ambient Temperature Anaerobic Digester with Co-Gen & Flare

Source: AgCert

Other issues and benefits

Issues to consider:

- If arsenic is added to the feedstock, ensure that the level of arsenic or other heavy metals in the feedstock are within permissible limits
- Measure the arsenic content of slurry/compost before land application

Benefits:

- Source for renewable energy
- Improved quality of fertilizer
- Reduced odour problems

Financing opportunities

Through:

Clean Development Mechanism (CDM)

World Bank Lending Programs

World Bank Carbon Funds & Facilities

Total funds pledged = US\$ 1.93 billion (13 governments, 62 companies)

- Prototype Carbon Fund. \$180 million (closed). Multi-shareholder. Multi-purpose.
- Netherlands Clean Development Mechanism Facility. \$170 million (closed). Netherlands Ministry of Environment. CDM energy, infrastructure and industry projects.
- Community Development Carbon Fund. \$128.6 million (closed). Multi-shareholder. Small-scale CDM energy projects.
- **BioCarbon Fund.** \$53.8 million (Tranche One closed). Multi-shareholder. CDM and JI LULUCF projects.
- Italian Carbon Fund. \$45 million (open to Italian participation). Multi-shareholder (from Italy only). Multipurpose.
- Netherlands European Carbon Facility. \$40 million managed jointly with IFC (closed). Netherlands Ministry of Economic affairs. JI projects.
- Spanish Carbon Fund. \$220 million (open to Spanish participation). Multi-shareholder (for from Spain only). Multipurpose.
- Danish Carbon Fund. \$75 million (open to Danish participation). Multi-shareholder (for from Denmark only). Multipurpose.
- Umbrella Carbon Facility. \$930 million (Tranche One). 2 HFC-23 projects in China.
- Carbon Fund for Europe (recently launched)

Carbon Finance at WB under CDM

Project based ERs

- Types of project activities:
 - Stand alone projects
 - Bundling and programs through one project entity
 - Blended with lending programs
- WB buys ERs at market price with low risk levels (CERs/VERs, post-2012)
- WB finances the development of CDM documents
- WB supports development of new methodologies
- WB may advance up to 25% of ERPA, provided the required guarantees

Capacity Building

WB provides Technical Assistance to DNAs through the CF-Assist program

WB Group lending programs

IBRD: with governments

- Link with the CAS (Country Assistance Strategy)
- Through government agencies
- Timing (>12months)

IFC: with private sector

Contact WBG Country Offices for more information.

Thank you!

For information about World Bank CDM project portfolio please visit www.carbonfinance.org

For information about World Bank lending programs please visit www.worldbank.org

For information about IFC lending programs please visit www.ifc.org

Contact information:

Roberto Aiello raiello@worldbank.org

Zarina Azizova zazizova@worldbank.org

Important factors determining emission reductions

Existing manure treatment system on livestock farms

Methane Conversion Factor (MCF)

Pasture 1%-2%

Daily spread 0.1%-1.0%

Solid storage 2%-5%

Dry lot 1%-2%

Liquid/slurry 17%-80%

Uncovered anaerobic lagoon (depth>=1m2) 66%-80%

Pit storage under animal confinements 17%-80%

Anaerobic digester 0%-100%

Aerobic treatment 0%

Other issues on large scale biogas plant feasibility and operations

Economic Feasibility

- Economic value of biogas: access to grid and tariff for the electricity generated from biogas or fuel cost saving for heating/cooking
- Market value for biogas residue as organic fertilizer for land application
- Transportation distance in case of centralized biogas plants
- Security of long-term supply of mature

Useful References

General Websites on CDM and JI:

- Internal CFB website on CDM methodologies: <u>Carbon Finance at the World Bank: Methodology</u> (www.carbonfinance.org)
- Website of the UNFCCC: <u>CDM: CDM-Home</u> (<u>http://cdm.unfccc.int/</u> and <u>http://ji.unfccc.int/</u>)
- Webiste of IPCC 2006: http://www.ipcc-nggip.iges.or.jp/public/2006gl/pdf/4_Volume4/V4_10_Ch_10_Livestock.pdf
- Website on CDM (and JI) procedures (Ministry of the Environment Japan, Institute for Global Environmental Strategies): http://www.iges.or.jp/en/cdm/report01.html
- Website (UNEP, Risø Centre): CDM (and JI) pipeline overview
 - http://cd4cdm.org/index.htm