

Agriculture and Agri-Food Canada Agriculture et Agroalimentaire Canada

Quantifying Fugitive Methane Emissions from Biodigesters

R.L. Desjardins¹, T.K. Flesch², D. Worth¹, Z. Gao³, X. Li⁴ and T. Martin¹

¹ Research Branch, Agriculture and Agri-Food Canada, 960 Carling Avenue, Ottawa, ON Canada

² Department of Earth and Atmospheric Sciences, University of Alberta, Edmonton, T6G 2H4 Canada

³ College of Resources and Environmental Science, Agricultural University of Hebei, Baoding, China 071001

Highland Renewables, Alberta, Canada

Methane to Markets NEW DELHI, INDIA 2-5 MARCH 2010

Agricultural biogas around the world

Country	# of
Country	<i>H</i> OI
	Digesters
Austria	350
Denmark	75
Finland	6
France	4
Germany	3,750
Italy	120
Netherlands	64
Sweden	8
Switzerland	81
United Kingdom	31
Total	4,489

Mostly industrial-scale biogas production for energy production

Mostly small-scale family or community biogas production for cooking fuel

Examples of Biodigesters in Canada

Approximately 16 large-scale biodigesters currently operational in Canada

Integrated Manure Utilization System (IMUS) Biogas Plant

- 1 MW generating capacity
- Manure feedstock from 36,000 head feedlot
- 100 tonnes manure consumed daily (20% of feedlot manure)
- Anaerobic digestion in two concrete tanks
- Internal temperature maintained at 55° C
- 5% new manure added daily -- 5% removed
- Removed digestate separated liquid to lagoon, solid as fertilizer

The Integrated Manure Utilization System

Liqu

Throughout the biogas production and consumption process, there are multiple opportunities for fugitive (unintended) methane emissions.

Heat and electricity generation

X

Quantifying Fugitive Emissions from Biodigesters

Background

Agricultural biodigesters reduce greenhouse gas (GHG) emissions & generate clean energy. GHG reduction depends on many factors (design, feedstock, etc.), including the amount of fugitive CH_4 emissions. Quantifying fugitive emissions is difficult -- commonly assumed:

- 15% of total CH₄ production (California Climate Action Registry)
- 15% of production (CDM 2005); 10% of production (IPCC 2006)
- 5% of production (EPA for covered anaerobic lagoons)

Why are fugitive methane emissions important?

Fugitive methane emissions from biodigestion represents:

•A loss of potential energy, heat and income in the biodigestion process

A negativ

global war

Fugitive m

How can we evaluate fugitive emissions from the whole biodigestion system and how can we identify emissions 'hotspots'?

been

high

estimated to range from 2-15% of biogas production, depending on plant efficiency.

Minimization of fugitive emissions can maximize energy, heat and income, while minimizing environmental impact.

bLS Inverse Dispersion Technique

- Atmospheric dispersion model relates downwind concentration
 C to emission rate Q for prevailing winds
- Measurement of C then infers Q

Measuring Methane

5-300 m

Open path lasers: laser

Wind Measurement

- 3-D Sonic Anemometer
- Gives the average windspeed, direction, and turbulence

Experimental Set-up to Measure Fugitive CH₄ Emissions

Estimating CH₄ emissions from synthetic barn release

Preliminary results of barn release in 2008

The flux rates from the barn were 60 L/min (140 dairy cows) and 80 L/min.

The criteria of the model for u_* , L and z_0 were met.

The barn height *h* was 6 m.

Use of CH₄ as a tracer gas to validate the bLS technique

% Recovery of Released CH ₄ 15 min mean +/- SD	Site Characteristics	Reference	
102 ±22	Grass, no obstructions	Flesch et al (2004)	
98 ± 20	Grass, obstructions (M>5h from obstructions)	Flesch et al (2005)	
107 ± 13	Grass, no obstruction	Harper et al (2006)	
106 ± 16	Grass, no obstructions	McBain and Desjardins (2005)	
99 ± 20	Grass, obstructions (M>10h from obstructions)	McBain and Desjardins (2005)	
86 ± 17	Whole-farm dairy (M>9h from obstructions)	McGinn et al (2006)	
102 ± 25	Grass, no obstructions	Gao et al (2007)	
104 ±29	Grass, no obstructions	Gao et al (2008)	15

Measurement Layout (Fall 2008)

- Lasers positioned for upwind & downwind CH₄ measurement
- Lasers moved as wind direction changed
- Sonic measured ambient winds
- Estimated pond emissions
- Measurements over 6 days

Measurement Layout (Summer 2009)

- More laser positions:
 - biogas plant emissions
 - pond emissions
 - feedstock emissions
 - offal emissions
- Measurements over 7 days

Summer Emissions:

90

80

70

60

Highlights

• High flaring emissions (\rightarrow 80 kg/hr)

fugitive emissions from biogas plant

 Large variability with time (due to irregular manure feeding?) Ave fugitive emissions = 4.0 kg/hr ~ 2% of gas production Flaring eliminated = 2.0 kg/hr ~ 1% of gas production **Elaring**

Observations:

Flare not efficient at burning-off methane in biogas. Flaring occurs when gas cannot be used for electrical generation. Enhanced emissions during flaring is evidence of inefficiency. We estimate flare burning efficiencies as low as 50%.

Manure "hopper" main source of fugitive methane (excluding flare). Manure enters biogas plant at hopper -- warm water mixed with manure & open to air. Suggests reduction in emissions when hopper redesigned to better seal (negative pressure).

Observations:

On-site runoff ponds & manure feedstock were minor methane sources. Measurements from runoff pond and feedstock pile indicate they give ~ 10% of fugitive biogas plant emissions. But main effluent pond is off-site (not measured).

In summer stored offal was major methane source. In summer offal (waste from animal slaughter) was stored prior to use as feedstock. This created a CH_4 source equal to the biogas plant.

Emissions During Flaring

Gas production during summer was 150 kg CH_4/hr . During flaring we assume production was vented and burned.

Summary:

- fugitive emissions from biogas plant Average = 2.8% of production • With flaring removed ... 2.3% Overall Average 5 Flaring Periods Removed • In summer -- flaring doubles đ 4 Emissions as % overall emissions production 3 flaring 2 1 0 Ē 0 Fall Winter Spring Summer - all observed emission sources

Conclusions

bLS technique practical for calculating emissions:

- Limited field equipment
- One-man operation
- Can look at different sources at site
- Fugitive emissions 2.8% of total CH₄ production
 - Yearly average
 - Includes periods of flaring & maintenance
 - Lower than typical assumption of 5 to 15%
- Flaring efficiency variable & less than expected
- Main emission source (excluding flare) was manure hopper – where manure enters biogas system

