Methane to Markets

The Kindersley Centre, Berkshire November 29th & 30th 2006

Anaerobic Digestion in Rural India: Current Status and Emerging Markets VVNKishore

Senior Fellow,

The Energy and Resources Institute, New Delhi, India

Contents

- Resource base for agricultural AD in India
- Technologies/models/scales
- Government policies
- Emerging markets: case studies
- Conclusions

Overview of resource base

- Cattle and other bovine population significant and increasing, but growth rate is small
- **Regional variances in cattle ownership**
- Predominantly small owners (possessing less than 4 cattle)
- Healthy growth of poultries

Potential for Agricultural AD in India

Biogas from cattle dung

Total bovine population (2003) : 272 million

Yearly dung production (@12 kg/day/animal) = 1191.3 million tons

Yearly gas production (@30 lit/kg) : 35739 million m³ /annum

Biogas from poultry litter

Total poultry population (1997) : 347 million

Yearly dung production (@ 200 g/bird) : 25 million tons

Yearly gas production (@ 116 l/kg) : 2938 million m³/ annum

Total gas production : 19.34 mtoe (387 mtoe total for India)

Methane to Markets

Technologies/ Biogas Plant Models commonly used in India

Floating gas holder type Biogas Plant (KVIC Model)

- KVIC model being disseminated since 1962
- Composite unit of a masonry digester and a metallic dome
- Maintenance of constant pressure by upward and downward movement

Food and Rural Affairs

Methane to Markets

Deenbandhu Model

- Developed in early 80s
- Design consists of segments of two spheres of different diameters joined at their base
- Fluctuating gas pressure
- Lower cost compared to KVIC model

A Deenabandhu Biogas Plant at Deoli Village, Himachal Pradesh.

Pragati Model

- Combination of Deenbandhu and KVIC designs
- Lower part of the digester is semi spherical with conical bottom
- Floating drum acts as a gas storage

TERI's Mark-4 System

A schematic diagram of the TERi's Mark-4 Bio-gas plant

Features

- Completely Spherical in shape
- Reinforced dome with layers of Ferro-cement and tile bricks
- Slurry Inlet box to avoid short circuits
- •Stirrer to have a homogenous mixture of slurry.
- 60% gas storage

A view of the TERI's Mark – 4 biogas plant model

Sanitary latrine with biogas plant

- Toilet linked biogas plants for conversion of night soil into biogas
- Popular in rural areas of some western districts
- Serves the purpose of sanitation and conversion of night soil into manure

BIMA Digester

Fig.1

1.Gasdome with automatic mixing valve2.Max. water level3.Intermediate ceiling4.Min. Water Level5.Input substrate6.Main Chamber7.Mixing Wings8.Effluent Channel9.Upper Chamber10.Effluent Pipe11.Mixing Shaft12.Feeding Pipe13.Central Tube14.Ground Sludge Pipe

- Advanced system based on the technology of M/s Entec, Austria
- Adopted for a wide range of wastes including MSW, slaughterhouse waste, vegetable wastes and animal dung
- Efficient for such inhomogeneous wastes as It causes mixing of wastes through biogas without any mechanical agitation
 High TS content up to 12%

TEAM Process:

A Biphasic process for digestion of leafy waste

Acidification

- •6 reactors for extraction of organics
- •HRT of 6 days
- •Digested waste is a very good manure

Methanation

High rate methanation reactor- UASB
HRT-16 h and COD reduction- 90%
Treatment of high strength leachate to produce biogas (70-75% CH₄)

Central financial incentives approved for 2006-07 under National Biogas and Manure Management Program (NBMMP)

- Varies for different categories and states (subsidy higher for lower caste etc, and for north eastern states)
- Subsidy of Rs 2700-4500 for KVIC and other models
- Additional subsidy of Rs. 500 for toilet linked plants
- Financial assistance provided for repair of non functional plants, for training, communication and publicity, and demonstration projects for digested slurry.

Biogas diffusion in India (1982-2005)

Community biogas systems, institutional plants, and night soil based plants (till March 2002)

- Current dissemination mainly through subsidies
- Dependency on imported high cost designs
- CDM as driver for emerging markets
- Conversion to CNG equivalent and decentralized bottling for possible future markets

Case studies of emerging markets

Case study 1 : Large AD system based on cattle dung

•

•

- Raw Feed (solid concentration : 16%)
- Location : Ludhiana, Punjab
- Type of digester
- Digester Retention time
- Biogas produced
- Biofertilizer Production
- Auxiliary power requirement
- Energy generation from plant
- Power to be exported to grid

235.0 tonnes/day

- BIMA
- 27 days

Methane to Markets

- 9116.0 m³/day
- 47 tonnes/day
- 2600 kWh/day
 - 19800 kWh/day
 - 17200 kWh/day

Biogas collection

Two BIMA Digesters and the Gas Holder

Gas engine with associated piping network

Case study 2: Poultry litter biomethanation plant

- Raw feed : 200 tons/day
- Location : Namakkal, Tamil Nadu
- Technology: BIMA digester
- Commissioned: March 2005
- Biogas produced : 18000 m³
- Retention time: 21 days
- Biofertiliser production: 40 tons/day
- Energy generation from plant: 1.5 MW
- Power exported to the grid: 26760-27686 kWh/day

Methane to Markets

Case study 3: Bundling of small plants for carbon credits

- Capacity of biogas plants
- Biogas application
- Location
- Coordinating agency
- Baseline fuel
- Total annual baseline emissions (tCO₂e/yr)
- Total annual CER generation from 5500 biogas plants
- Total CER for 7 year crediting period
- Status

2 m³ Cooking Bagepalli Women for sustainable development wood, kerosene 3.56 per household

19553 tCO₂e 136874 tCO₂e Project registered with CDM executive board on 10 December 2005

Constraints for market development in AD

- Small owners, distributed resource base
- Products of AD (methane, wet manure) not easily saleable in their current forms
- Private players in industrial AD (e.g., distillery effluents), but few in agricultural AD
- Very little R&D in AD
- Policies not in place for encouraging entrepreneurship

Conclusions

- High potential for biogas generation from varied sources (animal dung, agro residues)
- Several digester designs for dung, but few for solid wastes
- Policies exist to encourage small scale AD for farmers and electricity generation from large scale plants
- Several constraints for market growth in AD
- Need for R&D and technology development

